Разведение кур

Генератор прямоугольных импульсов с регулируемой частотой. Регулируемый генератор прямоугольных импульсов. Изображение на электрических схемах

Микросхема интегрального таймера 555 была разработана 44 года назад, в 1971 году и до сих пор популярна. Пожалуй, ещё ни одна микросхема так долго не служила людям. Чего только на ней не собирали, даже поговаривают, что номер 555 - это число вариантов её применения:) Одно из классических применений 555 таймера - регулируемый генератор прямоугольных импульсов.
В этом обзоре будет описание генератора, конкретное применение будет в следующий раз.

Плату прислали запечатанной в антистатический пакетик, но микросхема очень дубовая и статикой её так просто не убить.


Качество монтажа нормальное, флюс не отмыт




Схема генератора стандартная для получения скважности импульсов ≤2


Красный светодиод подключен на выход генератора и при малой выходной частоте - мигает.
По китайской традиции, производитель забыл поставить ограничивающий резистор последовательно с верхним подстроечником. По спецификации, он должен быть не менее 1кОм, чтобы не перегружать внутренний ключ микросхемы, однако, реально схема работает и при меньшем сопротивлении - вплоть до 200 Ом, при котором происходит срыв генерации. Добавить ограничивающий резистор на плату затруднительно из-за особенности разводки печатной платы.
Диапазон рабочих частот выбирается установленной перемычной в одной из четырёх позиций
Частоты продавец указал неверно.


Реально измеренные частоты генератора при питающем напряжении 12В
1 - от 0,5Гц до 50Гц
2 - от 35Гц до 3,5kГц
3 - от 650Гц до 65кГц
4 - от 50кГц до 600кГц

Нижний резистор (по схеме) задаёт длительность паузы импульса, верхний резистор задаёт период следования импульсов.
Напряжение питания 4,5-16В, максимальная нагрузка на выходе - 200мА

Стабильность выходных импульсов на 2 и 3 диапазонах невысока из-за применения конденсаторов из сегнетоэлектрической керамики типа Y5V - частота сильно уползает не только при изменении температуры, но даже при изменении питающего напряжения (причём в разы). Рисовать графики не стал, просто поверьте на слово.
На остальных диапазонах стабильность импульсов приемлемая.

Вот что он выдаёт на 1 диапазоне
На максимальном сопротивлении подстроечников


В режиме меандр (верхний 300 Ом, нижний на максимуме)


В режиме максимальной частоты (верхний 300 Ом, нижний на минимум)


В режиме минимальной скважности импульсов (верхний подстроечник на максимуме, нижний на минимуме)

Для китайских производителей: добавьте ограничивающий резистор 300-390 Ом, замените керамический конденсатор 6,8мкФ на электролитический 2,2мкФ/50В, и замените конденсатор 0,1мкФ Y5V на более качественный 47нФ X5R (X7R)
Вот готовая доработанная схема


Себе генератор не переделывал, т.к. указанные недостатки для моего применения не критичны.

Вывод: полезность устройства выясняется, когда какая-либо Ваша самоделка потребует подать на неё импульсы:)
Продолжение следует…

Планирую купить +32 Добавить в избранное Обзор понравился +28 +58

Это устройство найдет применение в различных приборах автоматики для периодического прерывания тока в цепях нагрузки или для генерирования импульсов с изменяемыми в широких пределах периодом следования и длительности. Скважность импульсов может достигать нескольких тысяч, период их повторения и длительность - десятков секунд.

При включении источника питания (см. схему) все транзисторы генератора закрыты, начинается зарядка конденсатора С1 через цепь VD1,R3, R H . Когда напряжение на эмиттере транзистора VT1 станет меньше, чем на базе, он откроется. Вслед за ним откроются и транзисторы VT2 и VT3. Теперь конденсатор С1 будет разряжаться через цепь VT2, R4, VT1. После разрядки конденсатора транзисторы снова закроются и процесс повторится.

Кроме указанной, в генератор введена еще одна цепь разрядки этого конденсатора - VT3, R5, VD2. Применение составного транзистора VT2VT3 позволяет увеличить сопротивление резистора R4, уменьшая тем самым влияние цепи VT2, R4, VT1 на длительность разрядки конденсатора С1. При этом генератор по сравнению с исходным получил ряд преимуществ; появилась возможность в широких пределах регулировать длительность импульсов; устранена зависимость длительности импульсов от периода их следования; улучшена форма выходных импульсов; напряжение практически перестало влиять на параметры импульсной последовательности.

Нагрузка R H (лампа накаливания, светодиод, обмотка реле и др.) может быть включена как в минусовой, так и в плюсовой провод питания. Транзистор VT3 выбирают в соответствии с током, потребляемым нагрузкой. К другим элементам генератора особых требований не предъявляется.

При указанных на схеме номиналах времязадающих элементов- С1, R3, R4, R5 - период следования импульсов можно регулировать от 20 до 1500 мс, а их длительность - от 0,5 до 1 2 мс.

А. ДРЫКОВ

Прямоугольные импульсы, имеющие широкий диапазон частот и скважности могут быть получены с помощью операционного усилителя uA741.

Схема такого генератора прямоугольных импульсов приведена ниже.

На схеме конденсатор С1 и R1 образует время задающую цепь. Резисторы R2 и R3 образуют делитель напряжения, который подает фиксированную часть выходного напряжения на не инвертирующий вывод ОУ в качестве опорного напряжения.

Генератор прямоугольных импульсов с регулируемой частотой. Описание работы

Первоначально напряжение на конденсаторе С1 будет равно нулю, а выход операционного усилителя будет высоким. В результате этого конденсатор C1 начинает заряжаться от положительного напряжения через потенциометр R1.

Когда конденсатор C1 зарядиться до уровня, при котором напряжение на инвертирующем выводе операционного усилителя станет выше напряжения на не инвертирующем, выход операционного усилителя переключиться на отрицательный.

При этом конденсатор быстро разрядиться через R1, а затем начинает заряжаться к отрицательному полюсу. Когда С1 зарядиться от отрицательного напряжения, так что напряжение на инвертирующем выводе будет более отрицательный, чем на не инвертирующем, выход усилителя переключиться на положительный.

Теперь конденсатор быстро разрядиться через R1 и начинает заряжаться от положительного полюса. Этот цикл будет повторяться бесконечно, и его результатом будет непрерывный меандр на выходе амплитудой от + Vcc и до -Vcc.

Период колебания генератора прямоугольных импульсов может быть выражен с помощью следующего уравнения:

Как правило, сопротивление R3 делают равным R2. Тогда уравнение для периода может быть упрощено:

Т = 2.1976R1C1

Частота может быть определена по формуле: F = 1 / T

Теперь немного об операционном усилителе uA741

Операционный усилитель uA741 является очень популярной микросхемой, которая может быть использована во многих схемах.

ОУ LM741 выпускается в 8 контактном пластиковом корпусе DIP, содержащий один усилитель.

Операционный усилитель uA741может применяться в различных электронных схемах, таких как: дифференциатор, интегратор, сумматор, вычитатель, дифференциальный усилитель, предусилитель, генератор частоты и т. д.

Хотя uA741, как правило, работает от двухполярного источника питания, но он так же с успехом может работать и от однополярного.

Назначение выводов uA741 показано на следующем рисунке:

Диапазон напряжения питания uA741 составляет от +/- 5 до +/- 18 вольт.

Номер контакта 1 и 5 предназначены для настройки нулевого смещения. Это может быть сделано путем подключения переменного резистора на 10K к контактам 1 и 2, а движок резистора к контакту 4.

Максимальная мощность рассеивания uA741 составляет 500 мВт.

Генераторы прямоугольных импульсов применяются во многих радиолюбительских устройствах: электронных счетчиках, игровых автоматах, ну и наиболее широкок применяют они получили при настройке цифровой техники. Предлагаем вашему вниманию подборку схем и конструкций генераторов прямоугольных импульсов

Амплитуда генерируемого сигнала в таких генераторах очень стабильна и близка к напряжению питания. Но форма колебаний весьма далека от синусоидальной - сигнал получается импульсным, причем длительность импульсов и пауз между ними легко регулируется. Импульсам легко придать вид меандра, когда длительность импульса равна длительности паузы между ними.

Основной и широко распространенный вид релаксационного генератора - симметричный мультивибратор на двух транзисторах, схема которого показана на рисунке ниже. В нем два стандартных усилительных каскада на транзисторах VT1 и VT2 соединены в последовательную цепочку, то есть выход одного каскада соединен со входом другого через разделительные конденсаторы С1 и С2. Они же определяют и частоту генерируемых колебаний F, точнее, их период Т. Напомню, что период и частота связаны простым соотношением

Если схема симметрична и номиналы деталей в обоих каскадах одинаковы, то и выходное напряжение имеет форму меандра.

Работает генератор так: сразу после включения, пока конденсаторы С1 и С2 не заряжены, транзисторы оказываются в «линейном» усилительном режиме, когда резисторами R1 и R2 задается некоторый малый ток базы, он определяет в Вст раз больший ток коллектора, и напряжение на коллекторах несколько меньше напряжения источника питания за счет падения напряжения на резисторах нагрузки R3 и R4. При этом малейшие изменения коллекторного напряжения (хотя бы из-за тепловых флуктуаций) одного транзистора передаются через конденсаторы С1 и С2 в цепь базы другого.

Предположим, что коллекторное напряжение VT1 чуть-чуть понизилось. Это изменение передается через конденсатор С2 в цепь базы VT2 и немного его запирает. Коллекторное напряжение VT2 возрастает, и это изменение передается конденсатором С1 на базу VT1, он отпирается, его коллекторный ток возрастает, а коллекторное напряжение понижается еще больше. Процесс происходит лавинообразно и очень быстро.

В результате транзистор VT1 оказывается полностью открыт, его коллекторное напряжение будет не более 0,05...0,1 В, a VT2 - полностью заперт, и его коллекторное напряжение равно напряжению питания. Теперь надо ждать, пока перезарядятся конденсаторы С1 и С2 и транзистор VT2 приоткроется током, текущим через резистор смещения R2. Лавинообразный процесс пойдет в обратном направлении и приведет к полному открыванию транзистора VT2 и полному запиранию VT1. Теперь нужно ждать еще полпериода, нужные для перезарядки конденсаторов.

Время перезарядки определяется напряжением питания, током через резисторы Rl, R2 и емкостью конденсаторов Cl, С2. При этом говорят о «постоянной времени» цепочек Rl, С1 и R2, С2, примерно соответствующей периоду колебаний. Действительно, произведение сопротивления в омах на емкость в фарадах дает время в секундах. Для номиналов, указанных на схеме рисунка 1 (360 кОм и 4700 пФ), постоянная времени получается около 1,7 миллисекунды, что говорит о том, что частота мультивибратора будет лежать в звуковом диапазоне порядка сотен герц. Частота повышается при увеличении напряжения питания и уменьшении номиналов Rl, С1 и R2, С2.

Описанный генератор весьма неприхотлив: в нем можно использовать практически любые транзисторы и изменять номиналы элементов в широких пределах. К его выходам можно подключать высокоомные телефоны, чтобы услышать звуковые колебания, или даже громкоговоритель - динамическую головку с понижающим трансформатором, например абонентский трансляционный громкоговоритель. Так можно организовать, например, звуковой генератор для изучения азбуки Морзе. Телеграфный ключ ставят в цепи питания, последовательно с батареей.

Поскольку два противофазных выхода мультивибратора в радиолюбительской практике нужны редко, автор задался целью сконструировать более простой и экономичный генератор, содержащий меньше элементов. То, что получилось, показано на следующем рисунке. Здесь использованы два транзистора с разными типами проводимости - п-р-п и р-n-р. Открываются они одновременно, коллекторный ток первого транзистора служит током базы второго.

Вместе транзисторы образуют также двухкаскадный усилитель, охваченный ПОС через цепочку R2,C1. Когда транзисторы запираются, напряжение на коллекторе VT2 (выход 1 В) падает до нуля, это падение передается через цепочку ПОС на базу VT1 и полностью его запирает. Когда конденсатор С1 зарядится до примерно 0,5 В на левой обкладке, транзистор VT1 приоткроется, через него потечет ток, вызывая еще больший ток транзистора VT2; напряжение на выходе начнет расти. Это возрастание передается на базу VT1, вызывая еще большее его открывание. Происходит вышеописанный лавинообразный процесс, полностью отпирающий оба транзистора. Через некоторое время, нужное для перезарядки С1, транзистор VT1 призакроется, поскольку ток через резистор большого номинала R1 недостаточен для его полного открывания, и лавинообразный процесс разовьется в обратном направлении.

Скважность генерируемых импульсов, то есть соотношение длительностей импульса и паузы, регулируется подбором резисторов R1 и R2, а частота колебаний - подбором емкости С1. Устойчивой генерации при выбранном напряжении питания добиваются подбором резистора R5. Им же в некоторых пределах можно регулировать выходное напряжение. Так, например, при указанных на схеме номиналах и напряжении питания 2,5 В (два дисковых щелочных аккумулятора) частота генерации составила 1 кГц, а выходное напряжение - ровно 1 В. Потребляемый от батареи ток получился около 0,2 мА, что говорит об очень высокой экономичности генератора.

Нагрузка генератора R3, R4 выполнена в виде делителя на 10, чтобы можно было снимать и меньшее напряжение сигнала, в данном случае 0,1 В. Еще меньшее напряжение (регулируемое) снимается с движка переменного резистора R4. Эта регулировка может оказаться полезной, если нужно определить или сравнить чувствительность телефонов, проверить высокочувствительный УНЧ, подав малый сигнал на его вход, и так далее. Если же таких задач не ставится, резистор R4 можно заменить постоянным или сделать еще одно звено делителя (0,01 В), добавив снизу еще резистор номиналом 27 Ом.

Сигнал прямоугольной формы с крутыми фронтами содержит широкий спектр частот - кроме основной частоты F, еще и ее нечетные гармоники 3F, 5F, 7F и так далее, вплоть до радиочастотного диапазона. Поэтому генератором можно проверять не только звуковую аппаратуру, но и радиоприемники. Конечно, амплитуда гармоник убывает с ростом их частоты, но достаточно чувствительный приемник позволяет прослушивать их во всем диапазоне длинных и средних волн.

Представляет собой кольцо из двух инверторов. Функции первого из них выполняет транзистор VT2, на входе которого включен эмиттерный повторитель на транзисторе VT1. Это сделано для повышения входного сопротивления первого инвертора, благодаря чему появляется возможность генерации низких частот при относительно небольшой емкости конденсатора С7. На выходе генератора включен элемент DD1.2, выполняющий роль буферного элемента, улучшающего согласование выхода генератора с испытуемой цепью.

Последовательно с времязадающим конденсатором (нужная величина емкости подбирается переключателем SA1) включен резистор R1, изменением сопротивления которого регулируется выходная частота генератора. Для регулировки скважности выходного сигнала (отношения периода импульса к его длительности) в схему введен резистор R2.

Устройство генерирует импульсы положительной полярности частотой 0,1 Гц...1 МГц и скважностью 2... 500. Частотный диапазон генератора разбит на 7 поддиапазонов: 0,1...1, 1 .10, 10...100, 100...1000 Гц и 1...10, 10...100, 100...1000 кГц, которые устанавливаются переключателем SA1.

В схеме можно использовать кремниевые маломощные транзисторы с коэффициентом усиления не менее 50 (например, КТ312, КТ342 и т. п.), интегральные схемы К155ЛНЗ, К155ЛН5.

Генератор прямоугольных импульсов на микроконтроллере на этой схеме, будет отличным пополнением в вашу домашнюю измерительную лабораторию.

Особенностью этой схемы генератора является фиксированное число частот, а точнее 31. И его можно применять в различных цифровых схемотехнических решениях, где требуется изменять частоты генератора автоматически или с помощью пятью переключателей.

Выбора той или иной частоты осуществляется с помощью посылки пятиразрядного двоичного кода на входе микроконтроллера.

Схема собрана на одном из самом распространенном микроконтроллере Attiny2313. Делитель частоты с регулируемым коэффициентом деления построен программно, используя частоту кварцевого генератора в роли опорной.

Генераторы импульсов - это устройства, которые способны создавать волны определенной формы. Тактовая частота в данном случае зависит от многих факторов. Основным предназначением генераторов принято считать синхронизацию процессов у электроприборов. Таким образом, у пользователя есть возможность настраивать различную цифровую технику.

Как пример можно привести часы, а также таймеры. Основным элементом устройств данного типа принято считать адаптер. Дополнительно в генераторы устанавливаются конденсаторы и резисторы вместе с диодами. К основным параметрам устройств можно отнести показатель возбуждения колебаний и отрицательного сопротивления.

Генераторы с инверторами

Сделать генератор импульсов своими руками с инверторами можно и в домашних условиях. Для этого адаптер потребуется бесконденсаторного типа. Резисторы лучше всего использовать именно полевые. Параметр передачи импульса у них находится на довольно высоком уровне. Конденсаторы к устройству необходимо подбирать исходя из мощности адаптера. Если его выходное напряжение составляет 2 В, то минимальная должна находиться на уровне 4 пФ. Дополнительно важно следить за параметром отрицательного сопротивления. В среднем он обязан колебаться в районе 8 Ом.

Модель прямоугольных импульсов с регулятором

На сегодняшний день генератор прямоугольных импульсов с регуляторами является довольно распространенным. Для того чтобы у пользователя была возможность настраивать предельную частоту устройства, необходимо использовать модулятор. На рынке производителями они представлены поворотного и кнопочного типа. В данном случае лучше всего остановиться на первом варианте. Все это позволит более тонко проводить настройку и не бояться за сбой в системе.

Устанавливается модулятор в генератор прямоугольных импульсов непосредственно на адаптер. При этом пайку необходимо производить очень аккуратно. В первую очередь следует хорошо прочистить все контакты. Если рассматривать бесконденсаторные адаптеры, то у них выходы находятся с верхней стороны. Дополнительно существуют аналоговые адаптеры, которые часто выпускаются с защитной крышкой. В этой ситуации ее необходимо удалить.

Для того чтобы у устройства была высокая пропускная способность, необходимо резисторы устанавливать попарно. Параметр возбуждения колебаний в данном случае обязан находиться на уровне Как основную проблему генератор прямоугольных импульсов (схема показана ниже) имеет резкое повышение рабочей температуры. В данном случае следует проверить отрицательное сопротивление бесконденсаторного адаптера.

Генератор перекрывающих импульсов

Чтобы сделать генератор импульсов своими руками, адаптер лучше всего использовать аналогового вида. Регуляторы в данном случае применять не обязательно. Связано это с тем, что уровень отрицательного сопротивления может превысить 5 Ом. В результате на резисторы оказывается довольно большая нагрузка. Конденсаторы к устройству подбираются с емкостью не менее 4 Ом. В свою очередь адаптер к ним подсоединяется только выходными контактами. Как основную проблему генератор импульсов имеет асимметричность колебаний, которая возникает вследствие перегрузки резисторов.

Устройство с симметричными импульсами

Сделать простой генератор импульсов такого типа можно только с использованием инверторов. Адаптер в такой ситуации лучше всего подбирать аналогового типа. Стоит он на рынке намного меньше, чем бесконденсаторная модификация. Дополнительно важно обращать внимание на тип резисторов. Многие специалисты для генератора советуют подбирать кварцевые модели. Однако пропускная способность у них довольно низкая. В результате параметр возбуждения колебаний никогда не превысит 4 мс. Плюс к этому добавляется риск перегрева адаптера.

Учитывая все вышесказанное, целесообразнее использовать полевые резисторы. в данном случае будет зависеть от их расположения на плате. Если выбирать вариант, когда они устанавливаются перед адаптером, в этом случае показатель возбуждения колебаний может дойти до 5 мс. В противной ситуации на хорошие результаты можно не рассчитывать. Проверить генератор импульсов на работоспособность можно просто подсоединив блок питания на 20 В. В результате уровень отрицательного сопротивления обязан находиться в районе 3 Ом.

Чтобы риск перегрева был минимальным, дополнительно важно использовать только емкостные конденсаторы. Регулятор в такое устройство устанавливать можно. Если рассматривать поворотные модификации, то как вариант подойдет модулятор серии ППР2. По своим характеристикам он на сегодняшний день является довольно надежным.

Генератор с триггером

Триггером называют устройство, которое отвечает за передачу сигнала. На сегодняшний день они продаются однонаправленные или двухнаправленные. Для генератора подходит только первый вариант. Устанавливается вышеуказанный элемент возле адаптера. При этом пайку необходимо проделывать только после тщательной зачистки всех контактов.

Непосредственно адаптер можно выбрать даже аналогового типа. Нагрузка в данном случае будет небольшой, а уровень отрицательного сопротивления при удачной сборке не превысит 5 Ом. Параметр возбуждения колебаний с триггером в среднем составляет 5 мс. Основную проблему генератор импульсов имеет такую: повышенная чувствительность. В результате с блоком питания выше 20 В указанные устройства работать не способны.

повышенной нагрузки?

Обратим внимание на микросхемы. Генераторы импульсов указанного типа подразумевают использование мощного индуктора. Дополнительно следует подбирать только аналоговый адаптер. В данном случае необходимо добиться высокой пропускной способности системы. Для этого конденсаторы применяются только емкостного типа. Как минимум отрицательное сопротивление они должны быть способны выдерживать на уровне 5 Ом.

Резисторы для устройства подходят самые разнообразные. Если выбирать их закрытого типа, то необходимо предусмотреть для них раздельный контакт. Если все же остановиться на полевых резисторах, то изменение фазы в данном случае будет происходить довольно долго. Тиристоры для таких устройств практически бесполезны.

Модели с кварцевой стабилизацией

Схема генератора импульсов данного типа предусматривает использование только бесконденсаторного адаптера. Все это необходимо для того, чтобы показатель возбуждения колебаний был как минимум на уровне 4 мс. Все это позволит также сократить термальные потери. Конденсаторы для устройства подбираются исходя из уровня отрицательного сопротивления. Дополнительно необходимо учитывать тип блока питания. Если рассматривать импульсные модели, то у них уровень выходного тока в среднем находится на отметке 30 В. Все это в конечном счете может привести к перегреву конденсаторов.

Чтобы избежать таких проблем, многие специалисты советуют устанавливать стабилитроны. Припаиваются они непосредственно на адаптер. Для этого необходимо прочистить все контакты и проверить напряжение катода. Вспомогательные адаптеры для таких генераторов также используются. В этой ситуации они играют роль коммутируемого трансивера. В результате параметр возбуждения колебаний повышается до 6 мс.

Генераторы с конденсаторами РР2

Складывается генератор высоковольтных импульсов с конденсаторами данного типа довольно просто. На рынке найти элементы для таких устройств не составляет никаких проблем. Однако важно подобрать качественную микросхему. Многие с этой целью приобретают многоканальные модификации. Однако стоят они в магазине довольно дорого по сравнению с обычными типами.

Транзисторы для генераторов подходят больше всего однопереходные. В данном случае параметр отрицательного сопротивления не должен превышать 7 Ом. В такой ситуации можно надеяться на стабильность работы системы. Чтобы повысить чувствительность устройства, многие советуют применять стабилитроны. При этом триггеры используются крайне редко. Связано это с тем, что пропускная способность модели значительно снижается. Основной проблемой конденсаторов принято считать усиление предельной частоты.

В результате смена фазы происходит с большим отрывом. Чтобы наладить процесс должным образом, необходимо вначале работы настроить адаптер. Если уровень отрицательного сопротивления находится на отметке 5 Ом, то предельная частота устройства должна составлять примерно 40 Гц. В результате нагрузка с резисторов снимается.

Модели с конденсаторами РР5

Генератор высоковольтных импульсов с указанными конденсаторами можно встретить довольно часто. При этом использоваться он способен даже с блоками питания на 15 В. Пропускная способность его зависит от типа адаптера. В данном случае важно определиться с резисторами. Если подбирать полевые модели, то адаптер целесообразнее устанавливать именно бесконденсаторного типа. В том случае параметр отрицательного сопротивления будет находиться в районе 3 Ом.

Стабилитроны в данном случае используются довольно часто. Связано это с резким понижением уровня предельной частоты. Для того чтобы ее выровнять, стабилитроны подходят идеально. Устанавливаются они, как правило, возле выходного порта. В свою очередь, резисторы лучше всего припаивать возле адаптера. Показатель колебательного возбуждения зависит от емкости конденсаторов. Рассматривая модели на 3 пФ, отметим, что вышеуказанный параметр никогда не превысит 6 мс.

Основные проблемы генератора

Основной проблемой устройств с конденсаторами РР5 принято считать повышенную чувствительность. При этом термальные показатели также находятся на невысоком уровне. За счет этого часто возникает потребность в использовании триггера. Однако в данном случае необходимо все же замерить показатель выходного напряжения. Если он при блоке в 20 В превышает 15 В, то триггер способен значительно улучшить работу системы.

Устройства на регуляторах МКМ25

Схема генератора импульсов с данным регулятором включает в себя резисторы только закрытого типа. При этом микросхемы можно использовать даже серии ППР1. В данном случае конденсаторов требуется только два. Уровень отрицательного сопротивления напрямую зависит от проводимости элементов. Если емкость конденсаторов составляет менее 4 пФ, то отрицательное сопротивление может повыситься даже до 5 Ом.

Чтобы решить данную проблему, необходимо использовать стабилитроны. Регулятор в данном случае устанавливается на генератор импульсов возле аналогового адаптера. Выходные контакты при этом необходимо тщательно зачистить. Также следует проверить пороговое напряжение самого катода. Если оно превышает 5 В, то подсоединять регулируемый генератор импульсов можно на два контакта.