Ландшафтный дизайн

Температура плавления фуллерена. Фуллерены: неожиданные биологические свойства углеродных наночастиц. Нелинейные оптические свойства

Фуллеренами в наиболее общем значении этого понятия можно назвать экспериментально полученные и гипотетические молекулы, состоящие исключительно из атомов углерода и имеющие форму выпуклых многогранников. Атомы углерода расположены в их вершинах, а C-C связи пролегают вдоль рёбер .

Фуллерен - это молекулярная форма углерода . Распространено определение, которое гласит, что фуллерены , находяшиеся в твёрдом состоянии, принято называть фуллеритами . Кристаллическая структура фуллерита представляет собой периодическую решётку молекул фуллерена, причём в кристаллическом фуллерите молекулы фуллеренов образуют ГЦК-решетку.

Фуллерен с начала девяностых годов представляет интерес для астрономии, физики, биологии, химии, геологии и других наук. Фуллерену приписывают фантастические медицинские свойства: например, фуллерен якобы уже начали использовать в косметике в качестве омолаживающего средства в косметологии. С помощью фуллерена собираются бороться с раком, ВИЧ и другими грозными заболеваниями. В то же время новизна этих данных, их малоизученность и специфика современного информационного пространства пока не позволяет доверять на сто процентов подобным сведениям о фуллерене.

ИЦМ(www.сайт)

Распространена сильно упрощённая точка зрения, что до открытия фуллерена существовали две полиморфные модификации углерода - графит и алмаз , а после 1990 года к ним добавилась ещё одна аллотропная форма углерода . На самом деле это не так, потому что формы существования углерода удивительно многообразны (см. статью ).

История открытия фуллеренов

Коллектив авторов под руководством Л.Н. Сидорова обобщил в монографии "Фуллерены" большое количество трудов на эту тему, хотя далеко не все: к моменту выхода книги общее количество посвящённых фуллеренам публикаций достигало примерно 15 тысяч. По мнению авторов, открытие фуллеренов - новой формы существования углерода - одного из самых распространённых элементов на нашей планете - признано одним из важнейших открытий в науке XX столетия. Несмотря на давно известную уникальную способность атомов углерода связываться в сложные разветвлённые и объёмные молекулярные структуры, составляющую основу всей органической химии, возможность образования только из одного углерода стабильных каркасных молекул всё равно оказалось неожиданной. По данным экспериментальное подтверждение тому, что молекулы подобного типа из 60 и более атомов могут возникать в ходе естественно протекающих в природе процессов, получено в 1985 г., но задолго до этого уже предполагали стабильность молекул с замкнутой углеродной сферой.

Обнаружение фуллеренов связано напрямую с исследованием процессов сублимации и конденсации углерода.

Новый этап в изучении фуллеренов наступил в 1990 году, когда был разработан метод получения новых соединений в граммовых количествах и описан способ выделения фуллеренов в чистом виде . После этого были установлены важнейшие структурные и физико-химические характеристики фуллерена С 60 . Изомер С60 (бакминстерфуллерен) - это наиболее легко образующееся соединение среди известных фуллеренов. Название своё фуллерен C60 получил в честь футуриста-архитектора Ричарда Бакминстера Фуллера, создавшего сооружения, куполообразный каркас которых состоял из пентагонов и гексагонов. Одновременно с этим в процессе исследования появилась необходимость в обобщающем названии фуллерены для объёмных структур с замкнутой поверхностью (углеродный каркас), благодаря их многообразию.

Стоит отметить также, что в честь Бакминстера Фуллера названа целая линейка углеродных материалов: фуллерен с60 (бакминстер фуллерен) также называют бакибол (Бакминстеру Фуллеру не нравилось имя "Бакминстер" и он предпочитал сокращённое имя "Баки"). Кроме того с этой же приставкой иногда называют: углеродные нанотрубки - бакитьюбы, фуллерены яйцевидной формы - buckyegg (buckyball egg) и т.п.

ИЦМ(www.сайт)

Свойства фуллеренов. Фуллерит

Свойства фуллеренов недостаточно изучены в силу объективных причин: относительно небольшое количество лабораторий имеет возможность изучать эти свойства. Зато в периодической и научно-популярной печати столько внимания отведено фуллеренам и их свойствам... Зачастую непроверенная информация о чудодейственных свойствах фуллеренов распространяется с поразительной скоростью и в огромных масштабах, в итоге слабый голос опровержений остаётся неуслышанным. Например, заявление одной группы учёных о том, что фуллерены присутствуют в шунгите, было проверено неоднократно, но подтверждения не нашло (см. обсуждение к ). Тем не менее шунгит сегодня считается "природным нанотехнологичным фуллеренсодержащим материалом" - утверждение, которое пока, на мой взгляд, больше похоже на маркетинговый ход.

Отдельные исследователи заявляют о таком настораживающем свойстве фуллеренов, как токсичность .

Как правило, когда говорят о свойствах фуллеренов имеют в виду их кристаллическую форму - фуллериты.

Существенное отличие кристаллов фуллеренов от молекулярных кристаллов многих других органических веществ в том, что у них не удаётся наблюдать жидкую фазу . Возможно, это связано с тем, что температура 1200 K перехода в жидкое состояние, которая приписывается фуллериту С 60 , уже превышает то её значение, при котором наступает заметная деструкция углеродного каркаса самих молекул фуллерена .

Согласно данным , к свойствам фуллеренов относится аномально высокоя стабильность, о которой свидетельствуют результаты исследований процессов с участием фуллеренов. В частности, автор отмечает, что кристаллический фуллерен существует как стабильное вещество вплоть до температур 1000 – 1200 К, что объясняется его кинетической устойчивостью. Правда это касается стабильности молекулы фуллерена С60 в инертной атмосфере аргона , а в присутствии кислорода наблюдается значительное окисление уже при 500 К с образованием CO и CO 2 .

Комплексному исследованию электрофизических и термодинамических свойств фуллеритов С60 и С70 в условиях экстремального ударного нагружения посвящена работа .

В любом случае при обсуждении свойств фуллеренов необходимо конкретизировать, какое соединение имеется в виду - С20, C60, С70 или другое, естественно, свойства у этих фуллеренов будут совершенно разные.

В настоящее время фуллерены С60, С70 и фуллеренсодержащие продукты производятся и предлагаются на реализацию различными зарубежными и отечественными предприятиями, поэтому купить фуллерены и заняться изучением свойств фуллеренов теоретически имеет возможность любой желающий. Фуллерены С60 и С70 предлагаются по ценам от 15$ до 210$ за грамм, и дороже, в зависимости от вида, степени чистоты, количества и других факторов. Производство и продажа фуллеренов »

Фуллерены в чугунах и сталях

Если предположить существование фуллеренов и фуллереновых структур в железо-углеродистых сплавах , то они должны существенно влиять на физико-механические свойства сталей и чугунов, участвуя в структурных и фазовых превращениях.

ИЦМ(www.сайт)

Механизмам кристаллизации железо-углеродистых сплавов давно уделяется очень пристальное внимание со стороны исследователей этих процессов. В статье рассматриваются возможные механизмы образования шаровидного графита в высокопрочном чугуне и особенности его строения как раз с учётом фуллереновой природы железоуглеродистых сплавов . Автор пишет, что "с открытием фуллеренов и структур на основе фуллеренов в ряде работ предпринимаются попытки объяснения механизма образования шаровидного графита на основе этих структур".

Работа рассматривает достижения в области химии фуллеренов и обобщает "новые представления о структуре железоуглеродистых расплавов". Автор утверждает, что молекулярная форма углерода – фуллерены С60 - идентифицирована им в железо-углеродистых сплавах, выплавленных методами классической металлургии, а также выявляет три возможных механизма появления фуллеренов в структуре сталей и чугунов :

  • переход фуллеренов в расплав из фуллеренсодержащей шихты в ходе металлургических процессов получения сплавов;
  • образование фуллеренов при первичной кристаллизации;
  • в результате структурных и фазовых превращений, протекающих при термических воздействиях.

    В своё время, 5 лет назад, мы выбрали фуллерен и гексагон в качестве логотипа сайта www.сайт, как символ последних достижений в области исследования железо-углеродистых расплавов, как символ новых разработок и открытий, связанных с модифицированием Fe-C расплава - неотъемлемым этапом современного литейного производства и малой металлургии.

  • Лит.:

    1. Сидоров Л.Н., Юровская М.А. и др. Фуллерены: Учебное пособие. М.: Издательство "Экзамен", 2005. - 688 с. (Серия "Учебное пособие для вузов") УДК 544(075.8) ББК 24.2я73 ISBN 5-472-00294-Х [ Аннотация ]
    2. Левицкий М.М., Леменовский Д.А. Фуллерен // Любопытные факты из истории химии [Электронный ресурс], 2005-2012. - Режим доступа: http://www.xenoid.ruu, свободный. - Загл. с экрана.
    3. Давыдов С.В. Кристаллизация шаровидного графита в расплаве высокопрочного чугуна // М.: Заготовительные производства в машиностроении, 2008, №3. – с. 3-8.
    4. Дунаев А., Шапорев А., под рук. Авдеева А.А. Богатое семейство углеродных материалов // Нанотехнологическое сообщество Нанометр [Электронный ресурс], 2008 - Режим доступа: http://www.nanometer.ru, свободный. - Загл. с экрана.
    5. Закирничная М.М. Образование фуллеренов в углеродистых сталях и чугунах при кристаллизации и термических воздействиях: Дис... докт. тех. наук; 05.02.01. - Уфа: УГНТУ. - 2001.
    6. Елецкий А.В., Смирнов В.М. Фуллерены // УФН, 1993. - №2. - С.33-58.
    7. Авдонин В.В. Электрофизические и термодинамические свойства фуллеритов C60 и C70 при высоких давлениях ударного сжатия: Автореф. дис... канд. тех. наук; 01.04.17. - Черноголовка: Институт проблем химической физики РАН. - 2008.
    8. Золотухин И.В. Фуллерит - новая форма углерода // Химия. - 1996.
    9. Палии Н.А. Фуллерен. Серебряный юбилей // Нанотехнологическое сообщество Нанометр [Электронный ресурс], 2010. - Режим доступа: http://www.nanometer.ru, свободный. - Загл. с экрана.
    10. Годовский Д.А. Образование фуллеренов при кристаллизации чугунов: Автореф. дис... канд. тех. наук; 05.02.01. - УФА. - 2000.
    11. A. Isacovic. Distinct Cytotoxic Mechanisms of Pristine versus Hydroxylated Fullerene / A. Isacovic, Z.Markovic, B.Todorovic, N.Nikolic, S. Vranjes-Djuric, M. Mirkovic, M. Dramicanin, L. Harhaji, N. Raicevic, Z. Nikolic, V. Trajkovic // Toxicological Sciences 91(1), 173–183 (2006)
    12. Борщевский А.Я. Фуллерены / Борщевский А.Я., Иоффе И.Н., Сидоров Л.Н., Троянов С.И., Юровская М.А. // Нанотехнологическое сообщество Нанометр [Электронный ресурс], 2007. - Режим доступа: http://www.nanometer.ru, свободный. - Загл. с экрана.

    В 1985 году была открыта молекула, состоящая из 60 атомов углерода, устроенная наподобие футбольного мяча, – фуллерен, названный так в честь инженера Ричарда Фуллера, прославившегося конструкциями именно такой формы. Помимо своей удивительно симметричной формы, эта молекула, являющаяся третьей (после алмаза и графита) аллотропной формой углерода, оказалась чем-то вроде философского камня алхимиков .

    До последнего времени она не перестает удивлять ученых своей крайне низкой токсичностью (особенно по сравнению с чем-то похоже устроенными нанотрубками ) и другими удивительными свойствами . Механизмы взаимодействия фуллеренов с клетками пока не ясны, но результат поистине можно назвать волшебством .

    Вот далеко не полный перечень тех свойств, которые заинтересовали медиков и биологов. Фуллерен и его производные можно использовать:

    • для защиты организма от радиации и ультрафиолетового излучения ;
    • для защиты от вирусов и бактерий ;
    • для защиты от аллергии . Так, в экспериментах in vivo введение производных фуллерена ингибирует анафилаксию у мышей, и при этом токсического эффекта не наблюдается;
    • как вещество, стимулирующее иммунитет ;
    • как мощный антиоксидант , поскольку он является активным акцептором радикалов. Антиоксидантная активность фуллерена сопоставима с действием антиоксидантов класса SkQ («ионов Скулачева») и в 100–1000 раз превышает действие обычных антиоксидантов, таких как витамин Е, бутилгидрокситолуол, β-каротин;
    • как лекарственные препараты для борьбы с раковыми заболеваниями ;
    • для ингибирования ангиогенеза ;
    • для защиты мозга от алкоголя ;
    • для стимуляции роста нервов;
    • для стимуляции процессов регенерации кожи. Так, фуллерен является важным компонентом косметических омолаживающих средств GRS и CEFINE;
    • для стимуляции роста волос ;
    • как лекарство с антиамилоидным действием .

    Помимо этого, фуллерен может использоваться для доставки в клетку различных лекарственных веществ и невирусной доставки в клеточное ядро генетических векторов .

    Казалось бы, куда еще расширять этот список, но недавно он пополнился еще одним, пожалуй, самым удивительным и непонятным, качеством фуллерена С60. При исследовании токсичности фуллерена С60, растворенного в оливковом масле, французские исследователи выяснили, что крысы, регулярно получающие раствор фуллерена С60, живут дольше, чем те, которым давали просто оливковое масло или обычную диету . (Краткий пересказ можно прочитать в статье «Оливковое масло с фуллеренами – эликсир молодости?» – ВМ.)

    Растворение в масле резко повышает эффективность фуллерена С60, так как его большие агрегаты (16 и более молекул) не способны проникнуть внутрь клеток .

    При этом продолжительность жизни увеличивалась не на какие-нибудь 20-30%, как в опытах с лучшими из «лекарств от старости» (такими как ресвератрол или рапамицин), а не менее чем в два раза ! Половина животных, получавших фуллерен, жили до 60 месяцев (самая старая крыса дожила до 5,5 лет). При этом в контрольной группе (с обычной диетой) продолжительность жизни 50% животных составляла 30 месяцев, а самые старые дожили лишь до 37 месяцев. Животные, получавшие оливковое масло без фуллерена, жили немного больше – 50% из них доживали до 40 месяцев, а самая старая крыса дожила до 58 месяцев.

    Диаграмма выживаемости крыс, получавших: обычную диету (голубая линия), вдобавок к диете оливковое масло (красная) и оливковое масло с растворенным в нем фуллереном С60 (черная линия). Рисунок из .

    Животворное действие фуллерена С60 авторы статьи приписывают его антиоксидантным свойствам. Однако не исключено, что оно может быть связано со способностью фуллерена С60 взаимодействовать с витамином А . Известно, что ретиноиды (к которым относится и витамин А) играют важную роль в экспрессии ключевых генов иммунной системы, и что локальный синтез ретиноидов, по всей видимости, играет ключевую роль в регуляции эмбриогенеза и регенерации .

    К сожалению, эти опыты были поставлены на небольших группах животных и потому требуют тщательной проверки. Учитывая тот факт, что очищенный фуллерен С60, производимый в России, стоит всего около 1800 рублей за грамм, повторить эти опыты, уточнить дозировки и продолжительность «лечения» не так уж и сложно. Сложнее другое. Будет ли эта «терапия старости» так же эффективна для человека? Ведь люди – не крысы, и есть десятки примеров того, что препарат, очень эффективно действующий в экспериментах на мышах, оказывался совершенно бесполезным (если не вредным!), когда испытания переходили в клинику. Что ж – время покажет. Интересно было бы также сопоставить активность фуллерена С60 по продлению жизни с его многочисленными водорастворимыми аналогами, синтезированными в России в самое последнее время.

    Написано по материалам оригинальной статьи .

    Литература

    1. А.В. Елецкий, Б.М. Смирнов. (1993). Фуллерены. УФН 163 (№ 2), 33–60;
    2. Mori T. et al. (2006). Preclinical studies on safety of fullerene upon acute oral administration and evaluation for no mutagenesis. Toxicology 225, 48–54;
    3. Szwarc H, Moussa F. (2011). Toxicity of 60fullerene: confusion in the scientific literature. J. Nanosci. Lett. 1, 61–62;
    4. биомолекула: «Невидимая граница: где сталкиваются „нано“ и „био“»;
    5. Marega R., Giust D., Kremer A., Bonifazi D. (2012). Supramolecular Chemistry of Fullerenes and Carbon Nanotubes at Interfaces: Toward Applications. Supramolecular Chemistry of Fullerenes and Carbon Nanotubes (eds N. Martin and J.-F. Nierengarten), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany;
    6. Пиотровский Л.Б. (2010). Наномедицина как часть нанотехнологий. Вестник РАМН 3, 41–46;
    7. Theriot C.A., Casey R.C., Moore V.C., Mitchell L., Reynolds J.O., Burgoyne M., et al. (2010). Dendrofullerene DF-1 provides radioprotection to radiosensitive mammalian cells. Radiat. Environ. Biophys. 49, 437–445;
    8. Andrievsky G.V., Bruskov V.I., Tykhomyrov A.A., Gudkov S.V. (2009). Peculiarities of the antioxidant and radioprotective effects of hydrated C60 fullerene nanostructures in vitro and in vivo. Free Radic. Biol. Med. 47, 786–793;
    9. Mashino T., Shimotohno K., Ikegami N., et al. (2005). Human immunodeficiency virus-reverse transcriptase inhibition and hepatitis C virus RNA-dependent RNA polymerase inhibition activities of fullerene derivatives. Bioorg. Med. Chem. Lett. 15, 1107–1109;
    10. Lu Z.S., Dai T.H., Huang L.Y., et al. (2010). Photodynamic therapy with a cationic functionalized fullerene rescues mice from fatal wound infections. Nanomedicine 5, 1525–1533;
    11. John J.R., Bateman H.R., Stover A., Gomez G., Norton S.K., Zhao W., et al. (2007). Fullerene nanomaterials inhibit the allergic response. J. Immunol. 179, 665–672;
    12. Xu Y.Y., Zhu J.D., Xiang K., Li Y.K., Sun R.H., Ma J., et al. (2011). Synthesis and immunomodulatory activity of 60fullerene-tuftsin conjugates. Biomaterials 32, 9940–9949;
    13. Gharbi N., Pressac M., Hadchouel M. et al. (2005). Fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity. Nano Lett. 5, 2578–2585;
    14. Chen Z., Ma L., Liu Y., Chen C. (2012). Applications of Functionalized Fullerenes in Tumor Theranostics. Theranostics 2, 238–250;
    15. Jiao F., Liu Y., Qu Y. et al. (2010). Studies on anti-tumor and antimetastatic activities of fullerenol in a mouse breast cancer model. Carbon 48, 2231–2243;
    16. Meng H., Xing G.M., Sun B.Y., Zhao F., Lei H., Li W., et al. (2010). Potent angiogenesis inhibition by the particulate form of fullerene derivatives. ACS Nano, 4, 2773–2783;
    17. Tykhomyrov A.A., Nedzvetsky V.S., Klochkov V.K., Andrievsky G.V. (2008). Nanostructures of hydrated C60 fullerene (C60HyFn) protect rat brain against alcohol impact and attenuate behavioral impairments of alcoholized animals. Toxicology 246, 158–165;
    18. Григорьев В.В., Петрова Л.Н., Иванова Т.А., с соавт. и Бачурин С.О. (2011). Исследование нейропротекторного действия гибридных структур на основе фуллерена С60. Изв. РАН серия Биологическая 2, 163–170;
    19. Zhou Z.G., Lenk R., Dellinger A., MacFarland D., Kumar K., Wilson S.R., et al. (2009). Fullerene nanomaterials potentiate hair growth. Nanomed. Nanotechnol. Biol. Med. 5, 202–207;
    20. Bobylev A.G., Kornev A.B., Bobyleva L.G., Shpagina M.D., Fadeeva I.S., Fadeev R.S., et al. (2011). Fullerenolates: metallated polyhydroxylated fullerenes with potent antiamyloid activity. Org. Biomol. Chem. 9, 5714–5719;
    21. биомолекула: «Наномедицина будущего: трансдермальная доставка с использованием наночастиц»;
    22. Montellano A., Da Ros T., Bianco A., Prato M. (2011). Fullerene C(60) as a multifunctional system for drug and gene delivery. Nanoscale 3, 4035–4041;
    23. Кузнецова С.А., Орецкая Т.С. (2010). Нанотранспортные системы адресной доставки нуклеиновых кислот в клетки. Российские нанотехнологии 5 (№ 9–10), 40–52;
    24. Baati T., Bourasset F., Gharb N., et al. (2012) The prolongation of the lifespan of rats by repeated oral administration of 60fullerene. Biomaterials 33, 4936–4946;
    25. Пиотровский Л.Б., Еропкин М.Ю., Еропкина Е.М., Думпис М.А., Киселев О.И. (2007). Механизмы биологического действия фуллеренов – зависимость от агрегатного состояния. Психофармакология и биологическая наркология 7 (№ 2), 1548–1554;
    26. Moussa F., Roux S., Pressac M., Genin E., Hadchouel M., Trivin F., et al. (1998). In vivo reaction between 60fullerene and vitamin A in mouse liver. New J. Chem. 22, 989–992;
    27. Linney E., Donerly S., Mackey L., Dobbs-McAuliffe B. (2001). The negative side of retinoic acid receptors. Neurotoxicol Teratol. 33, 631–640;
    28. Gudas L.J. (2012). Emerging Roles for Retinoids in Regeneration and Differentiation in Normal and Disease States. Biochim Biophys Acta 1821, 213–221.

    Портал «Вечная молодость»

    – одна из форм чистого углерода, в котором атомы соединены между собой в кристаллическую решетку, напоминающую по форме футбольный мяч. В зависимости от числа атомов фуллерены могут низшими (от 24х до 70 атомов) и высшими (70 и более атомов). Практический интерес представляют молекулы фуллерена с 60 и 70 атомами как наиболее распространенные (С60 и С70 соответственно).

    Фуллерены, изомерный ряд:


    Благодаря своим уникальным свойствам: бактерицидным, антиоксидирующим, сорбирующим, фуллерены в будущем имеют серьезную перспективу применения в медицине:

    Добавка в органические масла, косметология, лечебная косметика: средства от псориаза, дерматитов и грибка, средства от выпадения волос, средства для избавления от шрамов, растяжек, пигментаций.
    Фармакологические препараты: противоожоговые и ранозаживляющие препараты (ускорение процесса заживлния в 2-2.5 раза, обезболивание), нетоксичные антибактериальные и дезинфицирующие средства, лекарства от гастрита, язвы, рака ЖКТ, туберкулеза и бактериальных язв, АКНЕ. Офтальмологические и гинекологические препараты (не разъедает слизистую). Иммуностимулирующие и противоаллергические препараты (одновременно). Потенциально лекарства от рака.
    БАДы: фуллерен – мощный антиоксидант (антиоксидирующая способность выше чем у аскорбиновой кислоты в 135 раз), нейтрализует свободные радикалы.

    Раневое покрытие с применением гидратированных фуллеренов (фуллеренолов С(60/70)ОН(Х)):

    Влияние фуллеренов на опухолевый рост:

    Являясь устойчивой формой наночастиц углерода, фуллерены обеспечивают однородные свойства технических монокристаллов и пленок.

    Электроника и оптика:

    Нелинейная оптика: пленки для оптических линз.
    Сверхпроводящие соединения: карбид кремния высокой плотности, полученный из фуллеренов.
    Солнечные элементы: пленки на карбиде кремния высокой плотности повышают эффективность солнечной энергетики до +30%.
    Промышленные и конструкционные материалы:
    Добавка в промышленные масла, резины и пластики: эффективность машинного масла увеличивается в 2-3 раза, срок службы изделий из резины и плстика увеличивается в 4 раза, также повышается холодоустойчивость этой продукции.
    Защитные покрытия: улучшенный антипригарные покрытия и покрытия с низким трением.
    Дисперсно упрочненные композиционные материалы.
    Фуллереновые добавки для роста алмазных пленок.

    Фуллереновая плёнка:

    Модель фуллерита:

    Единственный способ получать существенные объемы фуллерена – это т.н. метод Кречмера, где два углеродных стержня сгорают в плазменной дуге. Он позволяет получать 0.2-0.5% фуллерена от массы стержней. Это медленный процесс и для наработки значимого количества продукта необходимо несколько суток и огромное количество электроэнергии (современные установки потребляют около 50КВт). Но это еще не все, далее необходимо «отмыть» фуллерен от ненужной углеродной сажи. На это, в зависимости от применяемой технологии, уходит от 2х до 4х недель. При этом расходуется большое количество растворителя, т.к. к воде фуллерен не растворяется.

    Принципиальная схема установки Кречмера:

    Таким образом, из-за непомерной сложности и дороговизны производства, фуллерены всегда вызывали чисто научный интерес, но не более.

    Российские ученые в Лаборатории Наноуглеродных Материалов при СПБГПУ добились значительных результатов как в области получения фуллерена, так и области его отмывки и получения его важных модификаций. Разработанные ими методы позволяют интенсифицировать процесс горения углеродных стержней, что позволило увеличить КПД перехода сажи в фуллерен до единиц процента(в 15-20 раз).

    Так же в лаборатории производится анализ качества продукта. Для этого используется современнейшие методы контроля: хроматографический, ИК-спекрометрический, массспектрометрический.

    Масс спектрограмма фуллерена:

    В данный момент лаборатория активно сотрудничает с несколькими медицинскими и техническими НИИ. Результатом такого сотрудничества уже стали завершенные исследования и патенты (

    Фуллерен – молекулярное соединение, принадлежащее к классу аллотропных форм углерода и представляющее собой выпуклые замкнутые многогранники, составленные из чётного числа трёхкоординированных атомов углерода. Уникальная структура фуллеренов обуславливает их уникальные физические и химические свойства.

    Другие формы углерода: графен, карбин, алмаз, фуллерен, углеродные нанотрубки, “вискерсы” .


    Описание и структура фуллерена:

    Фуллерен, бакибол, или букибол - молекулярное соединение, принадлежащее к классу аллотропных форм углерода и представляющее собой выпуклые замкнутые многогранники, составленные из чётного числа трёхкоординированных атомов углерода .

    Фуллерены названы таким образом по имени инженера и архитектора Ричарда Бакминстера Фуллера, который разработал и построил пространственную конструкцию «геодезического купола», представляющую собой полусферу, собранную из тетраэдров. Данная конструкция принесла Фуллеру международное признание и известность. Сегодня по его разработкам разрабатываются и строятся купольные дома . Фуллерен по своей структуре и форме напоминает указанные конструкции Ричарда Бакминстера Фуллера.

    Уникальная структура фуллеренов обуславливает их уникальные физические и химические свойства. В соединении с другими веществами они позволяют получить материалы с принципиально новыми свойствами.

    В молекулах фуллеренов атомы углерода расположены в вершинах шести- и пятиугольников, из которых составлена поверхность сферы или эллипсоида. Самый симметричный и наиболее полно изученный представитель семейства фуллеренов - фуллерен (C 60), в котором углеродные атомы образуют усечённый икосаэдр, состоящий из 20 шестиугольников и 12 пятиугольников и напоминающий футбольный мяч (как идеальная форма, крайне редко встречающаяся в природе).

    Следующим по распространённости является фуллерен C 70 , отличающийся от фуллерена C 60 вставкой пояса из 10 атомов углерода в экваториальную область C 60 , в результате чего молекула фуллерена C 60 является вытянутой и напоминает своей формой мяч для игры в регби.

    Так называемые высшие фуллерены, содержащие большее число атомов углерода (до 400 и более), образуются в значительно меньших количествах и часто имеют довольно сложный изомерный состав. Среди наиболее изученных высших фуллеренов можно выделить C n , где n = 74, 76, 78, 80, 82 и 84.

    Связь между вершинами, ребрами и гранями фуллерена может быть выражена математической формулой согласно теореме Эйлера для многогранников:

    В – Р + Г = 2,

    где В – число вершин выпуклого многогранника, Р – число его рёбер и Г – число граней.

    Необходимым условием существования выпуклого многогранника согласно теореме Эйлера (и соответственно существования фуллерена с определенной структурой и формой) является наличие ровно 12 пятиугольных граней и В/2 – 10 граней.

    Возможность существования фуллерена была предсказана японскими учеными в 1971 году, теоретически обоснование было сделано советскими учеными в 1973 году. Впервые фуллерен был синтезирован в 1985 г. в США.

    Практически весь фуллерен получают искусственным путем. В природе он содержится в очень малых количествах. Он образуются при горении природного газа и разряде молнии, а также содержится в очень малых количествах в шунгитах, фульгуритах, метеоритах и донных отложениях, возраст которых достигает 65 миллионов лет.


    Соединения фуллерена:

    Фуллерен легко вступает в соединения с другими химическими элементами. В настоящее время на основе фуллеренов уже синтезировано более 3 тысяч новых и производных соединений.

    Если в состав молекулы фуллерена, помимо атомов углерода, входят атомы других химических элементов, то, если атомы других химических элементов расположены внутри углеродного каркаса, такие фуллерены называются эндоэдральными, если снаружи - экзоэдральными.


    Преимущества и свойства фуллерена:

    – материалы с применением фуллеренов обладают повышенной прочностью, износостойкостью, термо – и хемостабильностью и уменьшенной истираемостью,

    – механические свойства фуллеренов позволяют использовать их в качестве высокоэффективной антифрикационной твердой смазки. На поверхностях контртел они образуют защитную фуллерено-полимерную плёнку толщиной десятки и сотни нанометров, которая защищает от термической и окислительной деструкции, увеличивает время жизни узлов трения в аварийных ситуациях в 3-8 раз, увеличивает термостабильность смазок до 400-500 °C и несущую способность узлов трения в 2-3 раза, расширяет рабочий интервал давлений узлов трения в 1,5-2 раза, уменьшает время приработки контртел,

    – фуллерены способны полимеризоваться и образовывать тонкие пленки ,

    – резкое снижение прозрачности раствора фуллеренов при превышении интенсивности оптического излучения некоторого критического значения за счет нелинейных оптических свойств,

    – возможность использования фуллеренов в качестве основы для нелинейных оптических затворов, применяемых для защиты оптических устройств от интенсивного оптического облучения,

    – фуллерены имеют способность проявлять свойства антиоксиданта или окислителя. В качестве антиоксидантов они превосходят действие всех известных антиоксидантов в 100 – 1000 раз. Были проведены опыты на крысах, которых кормили фуллеренами в оливковом масле. При этом крысы жили вдвое дольше обычных, и, к тому же, демонстрировали повышенную устойчивость к действию токсических факторов,

    – является полупроводником с шириной запрещённой зоны ~1.5 эВ и его свойства во многом аналогичны свойствам других полупроводников,

    – фуллерены С60, выступая в качестве лиганда, взаимодействуют с щелочными и некоторыми другими металлами. При этом образуются комплексные соединения состава Ме 3 С60, обладающие свойствами сверхпроводников.

    Свойства молекулы фуллерена*:

    * применительно к фуллерену С60.

    Получение фуллеренов:

    Основными способами получения фуллеренов считаются:

    – сжигание графитовых электродов в электрической дуге в атмосфере гелия при низких давлениях,

    – сжигания углеводородов в пламени.

    Необходимо отметить, что особую сложность представляет не только само по себе получение фуллеренов (их выход в виде углеродной сажи крайне низкий), но и последующее выделение, очистка и разделение фуллеренов по классам из углеродной сажи.