Ворота

Описание опыта как получить пироксилин читать. Бездымный порох: история изобретения, состав, применение. Охотничий бездымный порох "Сокол". Крокодилы Максим Козлов

Так как холивар в предыдущем треде не успокаивается и лица объективно " возвышающие советский период истории России за счёт обливания грязью всех других" перешли на объективные доказательства в виде русских 12" снарядов в РЯВ, которые как рассказывают давали 150 осколков против 15 000 японских, не могу промолчать о данном взрывчатом веществе и правилам безопасного с ним обращения.

Впрочем начну с осколков, от разницы в цифрах которых действительно тянет сделать фейспалм. Но не от столь явной отсталости бездарного царизма.

1. 150 осколков? При снаряжении бризантным ВВ каким является пироксилин? При чёрном порохе да, схема дробления другая - небольшое число сравнительно крупных осколков.
2. Источник кто, стесняюсь спросить? Не Костенко ли?
3. Пусть даже источник не пойман на сознательных фальсификациях. Масса осколков в зачёт в каждом случае идёт какая? Сравниваются какие типы снарядов? Бронебойные с бронебойными, видимо именно которыми японцы с такой скоростью раскатали "Ослябю" или всё таки русский бронебойный и японский фугасный?

И пока ответа на данные вопросы не будет, в моем блоге эти 150 осколков прошу не упоминать.

Теперь пришло время перейти к самой тринитроцеллюлозе в страницах учебника 1908 года "Конно-сапёрное дело" предназначенного для юнкеров кавалерийских училищ Русской Императорской Армии, где достаточно ярко освещено как само данное взрывчатое вещество, так и правила его хранения и эксплуатации - весьма надо сказать хлопотные. После изучения которых мы и перейдём к вопросу, почему русские снаряды при Цусиме не взрывались. либо взрывались не полностью.







Как имеющий глаза да увидит, тринитрат целлюлозы достаточно требовательное вещество к условиям своего хранения. Сухой пироксилин (1% влажности) может взорваться не только от прострела пулей (попадания осколка) но и при попытке резать его ножом, по мере повышения влажности чувствительность ВВ снижается и при достижении влажности более 7% он становится практически инертным, инициируясь исключительно взрывом промежуточного заряда. Дальнейшее повышение влажности в конце концов приводит к тому что даже промежуточный заряд оказывается не в силах массу ВВ инициировать.

Тринитротолуол на фоне данного взрывчатого вещества просто мечта сапёра с артиллеристом, вторые дай им сейчас снаряды с пироксилиновым содержимым будут готовы рехнуться возложи на них ответственность ещё и влажность ладно бы на погребах и складах, так взрывчатого вещества в боеприпасах находясь в поле, контролировать. Чтобы либо не подорваться при выстреле, либо кидать не взрывающиеся болванки. Это между прочим задевает и отсталых царских генералов, по глупости не имевших фугасной гранаты к новейшим 3" полевым скорострелкам, имея их к 87 мм полевым орудиям обр.1877- впрочем, со снаряжением дымным порохом. Однако я слегка отвлёкся, вернёмся к флоту.

Впервые тема "не взрывающихся" снарядов как один из главных факторов Цусимской катастрофы стала достоянием широкой публики в ходе разборов подавления Свеаборгского мятежа, когда в ходе обстрела мятежников последним бородинцем - "Славой", которая хотя и не успела войти в строй до отправки 2 ТОЭ в поход в один конец, однако получила заготовленные для нее боеприпасы, из выпущенных 59 снарядов полноценно не взорвался ни один. У части неполным взрывом повышибало днища.

Конечно в данном случае можно грешить и на ударные трубки, осыревание которых было общей бедой всего мира в данный период, однако столь массовый процент отказов и их описания (те самые выбитые неполным взрывом днища снарядов) говорят достаточно ясно - без элементарно не инициируемого штатно сработавшим взрывателем снаряжения там по крайней мере частично не обошлось.

А в чём же был секрет партий боеприпасов предназначенных для 2 ТОЭ, что их отличало от прочих, включая Порт-Артурскую эскадру которая на боеприпасы не жаловалась? А отличал их исключительно повышенный процент влажности пироксилина снаряжения, что впрочем было штатной мерой безопасности к боеприпасам всех русских боевых кораблей того периода ожидающих долгого плавания в тропиках.

Мы уже никогда не узнаем точно, почему не взорвалась заметная часть русских снарядов попавших в корабли Того, либо последовали неполные взрывы и соответственно кто в этом виноват. Промышленность ли при изготовлении (маловероятно), матросы и офицеры в арсеналах и на кораблях зафлегматизировавшие пироксилин в ходе подготовки похода до полной инертности из за нарушений технологии, или элементарная высокая влажность в погребах, "Славы" в том числе из за недостатков конструкции или несоблюдения правил несения службы, или же виновных вообще не было - ибо обратной стороной этих невзрывов были бы взрывы в каналах стволов при выстреле, а то и гибель кораблей без воздействия противника. Как это например произошло с собратом по несчастью "Эмдена" - такого же неуловимого до поры "Карлсруэ" у берегов Западной Индии.

Однако ясно, что взрывчатое вещество крайне требовательное к условиям хранения штатно будет работать только при строгом соблюдении указанных условий и никак более, что может входить в жесточайшие противоречия с условиями безопасности. Это нереально в ходе кругосветки эскадры в 1905 году, ладно бы на новейших броненосцах, на старом хламе типа "Дмитрия Донског"о или "Адмирала Ушакова" отслеживать влажность ВВ каждого снаряда в погребах. Это сейчас, через 110 лет надежность инициации ВВ в боеприпасах стало чем то незыблемым. Когда обличаете про "нормальные снаряды" пожалуйста не забывайте об этом. Тогда когда нормальным снаряжением снарядов артиллерии был пироксилин с черным порохом снаряды с последним внезапно, "по своему действию немногим отличались от обычных болванок" , не знали запрессовки флегматизированного гексогена. Избиение "Ивинсиблом" и Инфлексиблом" Стрэди "Шангхорста" с "Грейзенау" которые выхватили по сорок+ древних 305 мм снарядов с совсем вовсе не лиддитным снаряжением каждый (ВСЕ вместе русские корабли при Цусиме, получили порядка 50 попаданий 12" калибром) , лица обличающие проклятый царизЬм в контексте "нормальных 12 дюймовых" почему то не воспринимают

Я думаю всем понятно почему с таким удовольствием после РЯВ все ухватились за тротил. После чего и в русской полевой артиллерии появилась "прекрасная 3" тротиловая граната" , нужность которых обсуждалась с момента принятия "скорострельных 3" пушек" на вооружение. И я считаю отсутствии производства приемлемого ВВ для полевой эксплуатации пушечных гранат, несовершенство ударных трубок, при и так не сильно высокой эффективности 3" калибра по укреплениям имело к выбору шрапнели как основного снаряда полевой скорострельной артиллерии прямое отношение. Как и отсутствие самих фугасов устраивающих характеристик, до появления в действующей армии первых импортных " гранат германского образца" которые вполне оперативно заказали после начала войны поскольку выбирать уже не приходилось.

Порох является неотъемлемым элементом, который используется для снаряжения патронов. Без изобретения этого вещества человечество никогда не узнало бы об огнестрельном оружии.

Но мало кто знаком с историей появления пороха. А его, оказывается, изобрели совершенно случайно. Да и потом долгое время применяли лишь для запуска фейерверков.

Появление пороха

Это вещество было изобретено в Китае. Точную дату появления дымного пороха, который еще называется и черным, не знает никто. Однако случилось это приблизительно в 8 в. до нашей эры. В те времена императоров Китая очень заботило собственное здоровье. Они хотели жить долго и даже мечтали о бессмертии. Для этого императоры поощряли труды китайских алхимиков, которые пытались открыть волшебный эликсир. Конечно, все мы знаем о том, что чудотворной жидкости человечество так и не получило. Однако китайцы, проявляя свое упорство, проводили множество опытов, смешивая при этом самые разные вещества. Они не теряли надежду исполнить императорский заказ. Но порой испытания заканчивались неприятными инцидентами. Один из них произошел после того, как алхимики смешали селитру, уголь и кое-какие иные компоненты. Неизвестный истории исследователь при испытании нового вещества получил пламя и дым. Изобретенную формулу записали даже в китайскую летопись.

В течение длительного периода времени черный порох использовался только для фейерверков. Однако китайцы пошли дальше. Они стабилизировали формулу этого вещества и научились применять его для взрывов.

В 11 в. было изобретено первое в истории пороховое оружие. Это были боевые ракеты, в которых порох вначале загорался, а затем происходил его взрыв. Использовали это пороховое оружие при осадах крепостных стен. Однако в те времена оно оказывало на противника больше психологическое, чем поражающее воздействие. Самым мощным оружием, которое придумали древние китайские исследователи, были глиняные ручные бомбы. Они взрывались и осыпали все вокруг осколками черепков.

Покорение Европы

Из Китая черный порох начал распространяться по всему миру. В Европе он появился в 11 в. Его привезли сюда арабские купцы, которые продавали ракеты для фейерверков. Применять это вещество в боевых целях стали монголы. Они использовали дымный порох при взятии ранее неприступных замков рыцарей. Монголами была использована довольно простая, но в то же время эффективная технология. Они делали под стенами подкоп и закладывали туда пороховую мину. Взрываясь, это боевое оружие с легкостью пробивало брешь даже в самых толстых заграждениях.

В 1118 г. в Европе появились первые пушки. Они были применены арабами при захвате Испании. В 1308 г. пороховые пушки сыграли решающую роль при взятии Гибралтарской крепости. Тогда они были использованы испанцами, которые переняли это оружие у арабов. После этого изготовление пороховых пушек началось по всей Европе. Не стала исключением и Россия.

Получение пироксилина

Черным порохом вплоть до конца 19 в. заряжали мортиры и пищали, кремневые ружья и мушкеты, а также другое боевое оружие. Но при этом ученые не прекращали свои исследования по совершенствованию этого вещества. Примером тому могут служить опыты Ломоносова, который установил рациональное соотношение всех составляющих пороховой смеси. История помнит и о неудачной попытке замены дефицитной селитры на бертолетовую соль, которая была предпринята Клодом Луи Бертоле. Результатом этой замены послужили многочисленные взрывы. Бертолетовая соль, или хлорат натрия, оказалась очень активным окислителем.

Новая веха в истории пороходелия началась с 1832 г. Именно тогда французский химик А. Браконо впервые получил нитроклетчатку, или прироксилин. Это вещество является эфиром азотной кислоты и целлюлозы. В молекуле последней находится большое количество гидроксильных групп, которые и вступают в реакцию с азотной кислотой.

Свойства пироксилина были исследованы многими учеными. Так, в 1848 г. русскими инженерами А.А. Фадеевым и Г.И. Гессом было установлено, что это вещество по своей мощности в несколько раз превосходит изобретенный китайцами черный порох. Были даже попытки использования пироксилина для стрельбы. Однако они закончились неудачей, так как пористая и рыхлая целлюлоза имела неоднородный состав и горела с непостоянной скоростью. Попытки спрессовать пироксилин также закончились неудачей. Во время этого процесса вещество часто возгоралось.

Получение пироксилинового пороха

Кто изобрел бездымный порох? В 1884 г. французским химиком Ж. Вьелем на основе пироксилина было создано монолитное вещество. Это и есть первый в истории человечества бездымный порох. Для его получения исследователь использовал способность пироксилина увеличиваться в объеме, находясь в смеси спирта и эфира. При этом получалась мягкая масса, которую после прессовали, делали из нее пластины или ленты, а далее подвергали сушке. Основная часть растворителя при этом улетучивалась. Незначительный его объем сохранялся в пироксилине. Он продолжал функционировать как пластификатор.

Такая масса и является основой бездымного пороха. Ее объем в этом взрывчатом веществе составляет порядка 80-95 %. В отличие от ранее полученной целлюлозы пироксилиновый порох показал свою способность сгорать с постоянной скоростью строго по слоям. Именно поэтому его и до настоящего времени используют для стрелкового оружия.

Преимущества нового вещества

Белый порох Вьеля стал настоящим революционным открытием в области огнестрельного стрелкового оружия. И причин, объясняющих этот факт, было несколько:

1. Порох практически не давал дыма, тогда как используемое ранее взрывчатое вещество уже после нескольких произведенных выстрелов значительно сужало поле зрения бойца. От появляющихся клубов дыма при применении черного пороха могли избавить только сильные порывы ветра. Кроме того, революционное изобретение позволяло не выдавать позицию бойца.

2. Порох Вьеля позволял пуле вылететь с большей скоростью. Из-за этого ее траектория была более прямой, что значительно повышало точность стрельбы и ее дальность, которая составила порядка 1000 м.

3. В связи с большими характеристиками мощности, бездымный порох использовался в меньших количествах. Боеприпасы стали значительно легче, что позволило увеличить их количество при перемещении армии.

4. Снаряжение патронов пироксилином позволяло срабатывать им даже в мокром состоянии. Боеприпасы, в основе которых находился черный порох, обязательно должны были предохраняться от влаги.

Порох Вьеля прошел успешные испытания в винтовке Лебеля, которую тут же взяла на вооружение французская армия. Поспешили применить изобретение и другие европейские страны. Первыми из них были Германия и Австрия. Новое вооружение в этих государствах было введено в 1888 г.

Нитроглицериновый порох

Вскоре исследователями было получено новое вещество для боевого оружия. Им стал нитроглицериновый бездымный порох. Другое его название - баллистит. Основой такого бездымного пороха также являлась нитроцеллюлоза. Однако ее количество во взрывчатом веществе было снижено до 56-57 процентов. В качестве пластификатора в данном случае служил жидкий тринитроглицерин. Такой порох оказался очень мощным, и стоит сказать о том, что он до сих пор находит свое применение в ракетных войсках и артиллерии.

Пироколлодийный порох

В конце 19 в. свою рецептуру бездымного взрывчатого вещества предложил Менделеев. Русский ученый нашел способ, позволяющий получить растворимую нитроклетчатку. Ее он и назвал пироколлодием. Полученное вещество выделяло максимальное количество газообразных продуктов. Пироколлодийный порох прошел успешные испытания в орудиях различного калибра, которые были проведены на морском полигоне.

Однако не только в этом состоят заслуги Ломоносова перед военным делом и изготовлением пороха. В технологию производства взрывчатого вещества им было внесено важное усовершенствование. Ученый предложил обезвоживать нитроклетчатку не сушкой, а с помощью спирта. Это сделало производство пороха более безопасным. Кроме того, было повышено качество самой нитроклетчатки, так как при помощи спирта из нее вымывались менее стойкие продукты.

Современное использование

В настоящее время порох, который основан на нитроцеллюлозе, используется в современном полуавтоматическом и автоматическом оружии. В отличие от черного пороха он практически не оставляет в стволах орудий твердых продуктов сгорания. Это и позволило осуществлять автоматическую перезарядку оружия при использовании в нем большого количества подвижных механизмов и частей.

Различные разновидности бездымного пороха являются основной частью метательных взрывчатых веществ, которые применяются в стрелковом вооружении.Они имеют столь широкое распространение, что, как правило, слово «порох» подразумевает собой именно бездымный. Вещество, изобретенное древними китайскими алхимиками, используется только в сигнальных ракетницах, подствольных гранатометах и в некоторых патронах, предназначенных для гладкоствольного оружия.

Что касается охотничьей среды, то здесь принято использовать пироксилиновую разновидность бездымного пороха. Только иногда находят свое применение нитроглицериновые виды, но особой популярностью они не пользуются.

Состав

Из каких компонентов состоит взрывчатое вещество, применяемое в охотничьем деле? Состав бездымного пороха не имеет ничего общего с дымным его видом. В основном он состоит из пироксилина. Его во взрывчатом веществе находится 91-96 процентов. Кроме того, охотничий порох содержит в себе от 1,2 до 5 % таких летучих веществ, как вода, спирт и эфир. Для увеличения стойкости во время хранения сюда включено от 1 до 1,5 процентов стабилизатора дифениламина. Замедляют горение наружных слоев пороховых зерен флегматизаторы. Их в бездымном охотничьем порохе находится от 2 до 6 процентов. Незначительную часть (0,2-0,3%) составляют пламегасящие присадки и графит.

Форма

Пироксилин, используемый для производства бездымного пороха, обрабатывается окислителем, основу которого составляет спиртоэфирная смесь. В конечном итоге получается однородное желеобразное вещество. Полученная смесь подвергается механической обработке. В результате получают зерненную структуру вещества, цвет которого варьируется от желто-бурого до чисто черного. Порой в рамках одной партии возможен различный оттенок пороха. Для придания ему однородного цвета производится обработка смеси порошкообразным графитом. Этот процесс позволяет и нивелировать слипаемость зерен.

Свойства

Бездымный порох отличает способность равномерного газообразования и горения. Это, в свою очередь, при изменении размера фракции позволяет обеспечить контроль и отрегулировать процессы горения.

Среди привлекательных свойств бездымного пороха отмечают следующее:

Низкую гигроскопичность и нерастворимость в воде;
- больший эффект и чистоту, чем у дымного аналога;
- сохранение свойств даже при повышенной влажности;
- возможность просушки;
- отсутствие дыма после выстрела, который производится с относительно негромким звуком.

Однако стоит иметь в виду, что белый порох:

Выделяет при выстреле угарный газ, который опасен для человека;
- негативно реагирует на изменения температур;
- способствует более быстрому износу оружия из-за создания высокой температуры в стволе;
- должен храниться в герметичной упаковке в связи с вероятностью его выветривания;
- обладает ограниченным сроком хранения;
- может быть пожароопасен при высокой температуре;
- не используется в оружии, в паспорте которого указывается на это.

Старейший российский порох

Этим взрывчатым веществом снаряжают охотничьи патроны с 1937 г. Порох «Сокол» обладает достаточно большой мощностью, соответствующей разработанным мировым стандартам. Следует отметить, что состав этого вещества был изменен в 1977 г. Это было сделано из-за установления более строгих правил к данному виду взрывчатых элементов.

Порох «Сокол» рекомендуют для использования начинающим охотникам, предпочитающим производить самостоятельную зарядку патронов. Ведь это вещество способно простить им ошибку с навеской. Порох «Сокол» используется многими отечественными производителями патронов, такими как «Полиэкс», «Феттер», «Азот» и другие.


Целлюлоза с азотной кислотой образует азотнокислые эфиры. Целлюлоза в нашем опыте - обычная хлопковая вата. Приготовим смесь азотной и серной кислот. Опустите в смесь вату, через некоторое время процесс нитрования целлюлозы заканчивается. Промоем полученную нитроцеллюлозу водой. Высушим. Нитроцеллюлоза при поджигании быстро сгорает. Нитроцеллюлоза используется для приготовления бездымного пороха.

Нитроцеллюлоза - волокнистая рыхлая масса белого цвета, по внешнему виду похожа на целлюлозу. Одна из важнейших характеристик - степень замещения гидроксильных групп на нитрогруппы. Лучшим сырьём для производства нитроцеллюлозы считаются длинноволокнистые сорта хлопка ручной сборки. Хлопок машинной сборки и древесная целлюлоза содержат значительно количество примесей, усложняющих подготовку и снижающих качество продукции. Нитроцеллюлозу получают действием на очищенную, разрыхленную и высушенную целлюлозу смесью серной и азотной кислот, называемой нитрующей смесью. Концентрация применяемой азотной кислоты обычно выше 77 %, а соотношение кислот и целлюлозы может быть от 30:1 до 100:1. Полученный после нитрования продукт подвергается многоступенчатой промывке, обработке слабокислыми и слабощелочными растворами, измельчению для повышения чистоты и стойкости при хранении. Сушка нитроцеллюлозы - сложный процесс, иногда совместно с сушкой применяется обезвоживание. Практически вся нитроцеллюлоза после получения используется в производстве различных продуктов. В случае необходимости хранится во влажном состоянии с содержанием воды или спирта не ниже 20 %.


Для опыта Вам понадобится следующие реактивы:
- Серная Кислота (H2SO4) 98% концетрации
- Азотная Кислота(HNO3) 68% концетрации
- Вата

Смешиваем кислоты в пропорции 7:3 (70% Серной кислоты и 30% Азотной кислоты). Я рассчитывал на 300 мл, поэтому взял 90 мл 68% Азотной кислоты и добавил туда 210 мл 98% Серной кислоты. Все это дело немного разогрелось и я, закрыв крышкой, поставил это в морозилку. На следующий день я приготовил на столе обычную вату (целлюлозу) и стакан на 500 мл + две чашки Петри, одна как подставка для стакана, а вторая в дальнейшем сыграет роль крышки. После того как содержимое бутылки я перелил в стакан, я начал туда кидать маленькими кусочками вату. Кидал до того момента, пока вся вата не заполнила стакан. Смысл в том, чтоб вся вата была пропитана нитровальной смесью (Азотка и серка).
Ну а дальше поставил в шкаф (темное и прохладное место). Все это дело должно храниться минимум 5-6 часов, но можно и день, и два (испытано, хуже не становится). Один раз у меня это все неделю лежало в шкафу, так как не было времени достать и промыть, и ни чего не испортилось. Ну а дальше все промываем. Разумеется, надеваем перчатки на руку и какую-нибудь тряпку на лицо + Защитные очки! Достаем из стакана вату (по кусочкам) и быстро промываем под холодной водой! Очень важно сделать все быстро, так как при попадании на ватку воды кислота в ней нагревается и может привести к потере продукта и его качеству. Вата начинает желтеть или ещё хуже, просто "сгорает" в горячей кислоте! Поэтому важно промывать именно маленькие порции, чтоб избежать большого количества кислоты, так как маленькое количество смыть намного проще, чем большое.
После промывки рекомендуется промыть вату раствором пищевой соды, но и, разумеется, промыть опять (от соды). После всех этих промывок от кислоты, вату хорошенько выжимаем и вываливаем на листок бумаги. Потом самая важная деталь - чтоб вата получилась как надо, её надо хорошенько разжать, чтоб она была такая воздушная, как и с самого начала. На этой фотке вата ещё мокрая, но уже приняла свой объем, после того как она высохнет её уже будет очень сложно отличить от обычной ваты, но она горит намного лучше, чем обычная вата.


Из-за очень высокой скорости горения она не успевает обжечь руку (тоже самое, что провести над зажигалкой палец). Разумеется, сначала она испытывается на железной пластине(а то мало ли что) и только когда вы видите, что кусочек этой ваты сгорает моментально с легким хлопком, можете смело сжигать её на ладони! А.А. Солонина Лабораторное приготовление взрывчатых веществ. Пособие для практических занятий в лаборатории (1925)

Методика:
Пироксилин получается действием азотной кислоты HNO 3 на клетчатку (C 6 H 10 O 5) x . Для лабораторных опытов можно брать вату; для усиления действия азотной кислоты добавляют серную кислоту H 2 SO 4 действие серной кислоты, прежде всего, объясняется тем, что последняя удаляет воду из круга взаимодействия азотной кислоты на клетчатку; в зависимости от крепости кислот, их отношения к количеству клетчатки и т.п., получаются пироксилины, содержащие различное количество азота.

Приняв по Вьелю х=4 т.е., C 24 H 40 O 20 действие азотной кислоты можно выразить следующими уравнениями:

C 24 H 40 O 20 + 12 HNO 3 = C 24 H 28 O 8 (ONO 2) 12 + 12 H 2 O
C 24 H 40 O 20 + 11 HNO 3 = C 24 H 29 O 9 (ONO 2) 11 + 11 H 2 O и т.д.

Лабораторное приготовление рыхлого пироксилина мы будем, по возможности, вести в тех условиях, как это производится на русских заводах; опишем производство 2-х сортов пироксилина: нерастворимого и растворимого, смесь которых в настоящее время употребляется для фабрикации бездымного пороха на наших заводах. За образец мы взяли фабричное приготовление пироксилина на Охтенских пороховых заводах и изменили детали, сообразно лабораторным условиям. Все лабораторное производство пироксилина можно разбить на следующие пять операций:

1) подготовка хлопка (в данном случае ваты);

2) приготовление кислотной смеси (азотной и серной);

З) нитрование хлопка;

4) промывка пироксилина;

5) сушка пироксилина;

1) Подготовка хлопка.
Вата, которая употребляется для приготовления рыхлого пироксилина, тщательно перебирается руками для отделения случайных примесей. Хорошо брать для этой цели белую гигроскопическую вату.

Вата сушится непрерывно в продолжении 2-3-х часов в сушильном шкафу при температура около 100°C; при сушке вата кладется тонким слоем в фарфоровую чашку или другой открытый сосуд. Охлаждают высушенную вату в эксикаторе над серной кислотой в течение часа.

2) Приготовление кислотной смеси.
Во время сушки можно приготовлять кислотную смесь. Расчет будем вести на 5 г. ваты. Чтобы получить нерастворимый пироксилин, на Охтенском пироксилиновом заводе берут смесь, содержащую моногидрата HNO 3 - 21.5% по весу, моногидрата H 2 SO 4 - 70.5% по весу и воды 8% по весу; для растворимого пироксилина 18% моногидрата - HNO 3 , 68% моногидрата H 2 SO 4 и 14% воды. Смеси же берется на заводе 1 килограмм (при работе с небольшим количеством хлопка можно брать меньше). Плотность кислот обычно быстро определяется при помощи 1) весов Mohr-Westphal"я или менее точно 2) при помощи ареометра.

Так для нерастворимого пироксилина: A=70.5%; B=21.5% то если взяли 100 г серной кислоты, содержащей 95.6% моногидрата H 2 SO 4 или плотностью 1.84 г/мл, то по уравнениям (1) и (2) вычисляется, что надо прибавить 35.6 г азотной кислоты, с содержанием моногидрата 81.8%, что соответствует плотности 1.463 г/мл; для приготовления же 1 кг смеси 737 г серной кислоты, плотностью 1.84 г/мл, и 263 г азотной кислоты, плотностью 1.46 г/мл.

3) Нитрование хлопка.
Разрезанная на возможно мелкие кусочки навеска ваты (5 г) опускается постепенно в стакан, куда налита охлажденная до комнатной температуры кислотная смесь, и затем перемешивается стеклянной палочкой. Вата, напитанная вышеуказанным количеством кислот, покрывается затем стеклянной пластинкой остается стоять в стаканчике: 12 часов - при приготовлении нерастворимого и 4 часа при приготовлении растворимого пироксилина.

4)Промывка пироксилина.
После нитрации пироксилин, насколько возможно, отжимается от кислот и уже после этого подвергается промывке. Сначала промывают холодной водой в течении 1/4 часа.

Для этого пироксилин перемещают в большую стеклянную чашку или стакан и пускают в сосуд с пироксилином из-под крана, при помощи каучуковой трубки, небольшую струю холодной воды; вода все время меняется, поэтому к посуде приспосабливается сифон. Во время промывки рекомендуется помешивать пироксилин стеклянной палочкой.

После холодной промывки пироксилин отжимается и промывается горячей водой. Для этого в колбе, или лучше в жестяном цилиндре, нагревают воду до кипения и пар, при помощи трубки, проводится в стакан или коническую колбу с пироксилином, в которую заранее приливают такое количество воды, чтобы весь пироксилин был покрыт водой.

Горячая промывка повторяется 8 раз; 1-я, 7-я и 8-я без всяких примесей, а при 2-ой, 3-й, 4-й, 5-й и 6-й промывках прибавляется в коническую колбу, где производится промывка, по 0,2 г (расчет на 5 г пироксилина) соды. Пропускание пара продолжается за раз не менее полутора часов; затем вода выливается из колбы, насыпается, если нужно 0,2 г соды и опять пропускается пар и т.д.

5) Сушка пироксилина.
Вода отжимается, насколько возможно, ручным прессом пироксилин кладется между листами фильтровальной бумаги и сушится в сушильном шкафу при температуре не выше 50°C. Пироксилин надо сушить не менее 6-8 часов до постоянного веса. Охлаждается в эксикаторе над серной кислотой и взвешивается. Выход пироксилина при этом обычно получается такой, что из 5 г ваты получается около 8 г пироксилина.

В пособии раскрывается значение массажа для здоровья ребенка, предлагаются комплексы массажа на первом году жизни, а также описываются виды профилактического и оздоровительного массажа при различных заболеваниях, отмечаются противопоказания для проведения массажа.

Самогон и другие спиртные напитки домашнего… Ирина Байдакова

В книге рассказывается об алкогольных напитках, которые можно приготовить в домашних условиях. Застолье никогда не обходилось без них. Главное, не забывать о чувстве меры. Рецептов напитков очень много, и у каждого своя история, уходящая корнями в глубь веков. Читатель узнает, как сварить самогон, сделать вино, и многое другое, используя в качестве исходного сырья все, что дано Природой. Книга рассчитана на самый широкий читательский круг.

Яблочный уксус - ваш домашний доктор Кристина Ляхова

Среди множества замечательных даров природы человек выбирает самые ценные и полезные, те, которые несут ему здоровье. Эта книга расскажет читателю о яблочном уксусе - удивительном народном средстве, которое имеет множество полезных свойств. Она раскроет секреты исцеления с его помощью, даст советы, как приготовить его в домашних условиях и как использовать в качестве продукта питания.

Рецепты французской кухни Нестор Пилипчук

Предлагаемая домашним хозяйкам книга содержит рецепты специфических французских блюд, приготовление которых в домашних условиях по кулинарным операциям не представляет трудностей. Многим домашним хозяйкам этот сборник поможет значительно разнообразить свой стол вкусными блюдами. Книга может быть также использована работниками сети общественного питания.

Вода, которую мы пьем Михаил Ахманов

Книга представляет собой серьезное исследование и одновременно увлекательное повествование, посвященное проблеме качества питьевой воды. Автор уделяет особое внимание способам очистке воды в домашних условиях, оценивает эффективность и полезность фильтров, предлагаемых отечественными и зарубежными фирмами. Работая над книгой, исследователь собрал сведения о качестве питьевой воды в разных регионах России, получил консультации ведущих специалистов. Книга будет интересна всем, кого заботит собственное здоровье, которое, как известно…

Корни добра Сергей Ашитков

Книга журналиста С.Р. Ашиткова посвящена важной проблеме популяризации знаний о животных. В форме коротких очерков и зарисовок автор знакомит читателя с образом жизни мелких диких животных а естественных и домашних условиях, призывает бережно относиться к ним. Второе издание вышло в 1985 г. В издании содержится много полезных сведений о том, как можно обеспечить правильный уход и кормление зверей и птиц, содержащихся в домашних условиях, рассказано о формах общения с ними и методах их приручения. Книга послужит хорошим пособием для всех любителей…

Животворящая сила Георгий Сытин

Для оздоровления предложен метод словесно-образного и эмоционально-волевого управления состоянием человека, который базируется на методах психотерапии и некоторых аспектах нетрадиционной медицины. Приведены тексты исцеляющих психологических настроев при различных заболеваниях. Метод апробирован и рекомендован к применению Минздравом СССР. В частности, он был успешно использован для реабилитации больных, пострадавших в результате Чернобыльской аварии. Метод безвреден и может применяться в домашних условиях самостоятельно. Для широкого…

Современные лекарства от А до Я Иван Корешкин

Так уж устроена жизнь современного человека, что без посещения аптеки практически не обойтись. Но разнообразие лекарственных средств, наводнивших прилавки, вызывает у многих растерянность. Для того, чтобы помочь сориентироваться в огромном количестве лекарственных препаратов, предлагаемых аптеками, мы создали этот справочник. В него вошли лекарственные средства, применимые в домашних условиях (т. е. таблетки, микстуры, настойки, экстракты, мази и гели). В справочнике вы найдете исчерпывающую информацию и о самых новых, и о давно известных лекарствах…

Переплет и реставрация книг Ю. Ирошников

В выпуске содержатся практические советы и рекомендации по переплету и реставрации книг в домашних условиях без использования специальных приспособлений, сложного инструмента и дефицитных материалов. Все предлагаемые советы и рецепты, проверенные авторами на практике, являются обобщением богатого опыта самодеятельных переплетчиков-любителей. Рекомендуется как для использования в кружках юных переплетчиков, так и для самостоятельного изучения и освоения переплетного и реставрационного дела.

Американский бульдог К. Угольников

Американский бульдог – мощная, атлетического телосложения собака. Легкий на подъем, он движется энергично и решительно, всегда производит впечатление стремительности, силы и проворства. При всей своей смелости и бесстрашии он очень любопытен. Книга содержит полезную информацию по содержанию, уходу, кормлению, лечению в домашних условиях собаки породы американский бульдог. С помощью методик, описанных в книге, Вы правильно воспитаете своего любимца. Если Вы хотите купить только одну книгу об этих собаках, то она перед Вами.

Крысы Ирина ИОФИНА

В этой книге вы найдете информацию об особенностях анатомического строения крыс, их содержании в домашних условиях, кормлении, купании. Узнаете, на что необходимо обратить внимание при разведении этих зверьков. Также описаны основные симптомы наиболее часто встречающихся у крыс заболеваний и методы их лечения. Книга адресована широкому кругу читателей.

Крокодилы Максим Козлов

Книга посвящена содержанию в домашних условиях таких редких животных, как крокодилы. Подробно рассматривается экология большинства диких видов крокодилов, указаны их современный статус, данные по состоянию популяции. Описаны основные принципы обустройства террариума для крокодилов, способы ухода за этими животными, правила кормления, приведены методы лечения наиболее распространенных заболеваний. Книга рассчитана на самый широкий круг читателей.

Диетическое питание Илья Мельников

Лечебное, или диетическое питание необходимо не только в условиях больницы, клиники, профилактория, санатория, но и в амбулаторных, домашних условиях, так как здесь оно может быть использовано длительно. Особенно велика его роль при всех хронических заболеваниях желудочно-кишечного тракта, почек, болезней обмена веществ, сердечно – сосудистой системы и др. Продолженное после лечения в больнице диетическое питание является важнейшим фактором предупреждения очередных обострений болезни и ее прогрессирования. Однако прежде чем воспользоваться…

Соусы и специи Илья Мельников

Соусы и приправы придают блюдам сочность и особый, специфический вкус и в этом отношении венчают процесс приготовления закусок, салатов и вторых блюд. Книга знакомит читателя с рецептами разных приправ и соусов, которые несложно приготовить в домашних условиях из самых доступных продуктов.

Технологическая ошибка Олег ОВЧИННИКОВ

Андрей – химик, «пусть и не до конца защитивший диссертацию». Отчасти из желания пополнить семейный бюджет, отчасти из желания просто пошалить, он решил написать статью для «Науки и жизни» о технологическом процессе изготовления пластмассовых изделий в домашних условиях… Рассказ публиковался в журнале «Звездная дорога», № 4, 2001 г.