Ворота

Механические колебания основные формулы. Гармонические колебания. Логарифмический декремент затухания

Механические колебания – это периодически повторяющиеся механические движения. Например: звук, вибрация или колебания математического маятника.

Колебаниям присущи определенные характеристики:

  1. Амплитуда. Размах, максимальное отклонение от точки равновесия.
  2. Частота. Периодичность, повторяемость за единицу времени.
  3. Период. Время, которое требуется для одного колебания.

Если обозначить частоту буквой v, то связь между ним и периодом, будет выражаться следующей формулой:

Частота измеряется в герцах, в честь немецкого ученого Генриха Герца. Один герц означает выполнение одного колебания или процесса за секунду.

Одним из важных видов колебаний являются так называемые гармонические колебания. Это те колебания, которые изменяются по гармонические закону, то есть их можно представить в виде функции, где значение определяется как синус (или косинус) от аргумента.

Координаты тела, совершающего колебания в такой системе, в общем виде будут выражены следующим образом:

Где:
Х(t) – значение колеблющейся величины x, в момент времени t.
A – максимальное смещение от точки равновесия, амплитуда колебаний.
w – циклическая частота, число колебаний за П2 сек.
ε0 – начальная фаза колебания.
Любые другие колебания, можно представить как сумму гармонических колебаний.

Примером таких колебаний, может служить математический маятник:

Где:
L ¬– длина нити.
g – ускорение свободного падения.
П – число Пи.
Следует обратить внимание, что период зависит только от длины маятника.

Превращение энергии в колебательных сиcтемах

При колебаниях, кинетическая энергия переходит в потенциальную энергию.
Когда тело отклоняется на наибольшую величину от точки равновесия, потенциальная энергия максимальна, а кинетическая равна нулю.
По мере движения тела в положение равновесия, будет увеличиваться кинетическая энергия, так как увеличивается скорость.
В положении равновесия тело будет иметь минимальную потенциальную, чаще всего равное нулю, а кинетическая будет максимальной.
Рассмотрим это на примере механического маятника.

В точке 1, потенциальная энергия будет иметь наибольшее значение. По мере движения грузика до положения 2, она будет уменьшаться до наименьшего значения. Далее, при переходе тела от положения 2 к 3, будет уменьшаться кинетическая энергия, а потенциальная увеличиваться.
Суммарная энергия системы, будет оставаться неизменной, в какой бы точке не находилось тело, так как потерь энергии нет. Если увеличивается кинетическая энергия, то потенциальная уменьшается и наоборот.

4.2. Понятия и определения раздела «колебания и волны»

Уравнение гармонических колебаний и его решение:

, x=Acos(ω 0 t+ α) ,

A – амплитуда колебаний;

α – начальная фаза колебаний.

Период колебаний материальной точки, совершающей колебаний под действием силы упругости:

где m – масса материальной точки;

k – коэффициент жесткости.

Период колебаний математического маятника:

где l – длина маятника;

g = 9,8 м/с 2 – ускорение свободного падения.

Амплитуда колебаний, получаемых при сложении двух одинаково направленных гармонических колебаний:

где A 1 и А 2 – амплитуды слагаемых колебаний;

φ 1 и φ 2 – начальные фазы слагаемых колебаний.

Начальная фаза колебаний, получаемых при сложении двух одинаково направленных гармонических колебаний:

.

Уравнение затухающих колебаний и его решение:

, ,

– частота затухающих колебаний,

здесь ω 0 – собственная частота колебаний.

Логарифмический декремент затухания:

где β – коэффициент затухания;

– период затухающих колебаний.

Добротность колебательной системы:

где θ – логарифмический декремент затухания

Уравнение вынужденных колебаний и его установившееся решение:

, x=A cos(ωt- φ),

где F 0 – амплитудное значение силы;

– амплитуда затухающих колебаний;

φ= – начальная фаза.

Резонансная частота колебаний:

,

где ω 0 – собственная циклическая частота колебаний;

β – коэффициент затухания.

Затухающие электромагнитные колебания в контуре, состоящем из емкости C , индуктивности L и сопротивления R :

,

где q – заряд на конденсаторе;

q m – амплитудное значение заряда на конденсаторе;

β =R /2L – коэффициент затухания,

здесь R – сопротивление контура;

L – индуктивность катушки;

– циклическая частота колебаний;

здесь ω 0 – собственная частота колебаний;

α – начальная фаза колебаний.

Период электромагнитных колебаний:

,

где С – емкость конденсатора;

L – индуктивность катушки;

R – сопротивление контура.

Если сопротивление контура мало, что (R /2L ) 2 <<1/LC , то период колебаний:

Длина волны:

где v – скорость распространения волны;

T – период колебаний.

Уравнение плоской волны:

ξ = A cos (ωt-kx),

где A – амплитуда;

ω – циклическая частота;

– волновое число.

Уравнение сферической волны:

,

где A – амплитуда;

ω – циклическая частота;

k – волновое число;

r – расстояние от центра волны до рассматриваемой точки среды.

? Свободные гармонические колебания в контуре

Идеальный контур – электрическая цепь, состоящая из последовательно соединенного конденсатора емкостью С и катушки индуктивности L. По гармоническому закону будут меняться напряжение на обкладках конденсатора и ток в катушке индуктивности.

? Гармонический осциллятор. Пружинный, физический и математический маятники, их периоды колебаний

Гармонический осциллятор- любая физическая система, совершающая колебания. Классические осцилляторы - пружинный, физический и математический маятники. Пружинный маятник - груз массой m , подвешенный на абсолютно упругой пружине и совершающий гармонические колебания под действием упругой силы. Т = . Физический маятник - твердое тело произвольной формы, совершающее колебания под действием силы тяжести вокруг горизонтальной оси, не проходящей через его центр тяжести. Т = . Математический маятник – изолированная система, состоящая из материальной точки массой m , подвешенной на нерастяжимой невесомой нити длиной L , и колеблющейся под действием силы тяжести. Т = .

? Свободные незатухающие механические колебания (уравнение, скорость, ускорение, энергия). Графическое изображение гармонических колебаний.

Колебания называются свободными, если они совершаются за счет первоначально сообщенной энергии при последующем отсутствии внешних воздействий на колебательную систему. Величина меняется по закону синуса или косинуса. , S - смещение от положения равновесия, А –амплитуда, w 0 - циклическая частота, –начальная фаза колебаний. Скорость , ускорение . Энергия полная – Е = . Графически – с помощью синусоиды или косинусоиды.

? Понятие о колебательных процессах. Гармонические колебания и их характеристики. Период, амплитуда, частота и фаза колебаний. Графическое изображение гармонических колебаний.

Периодические процессы, повторяющиеся со временем, называют колебательными. Периодические колебания, при которых координата тела меняется со временем по закону синуса или косинуса, называются гармоническими. Период - время одного колебания. Амплитуда – максимальное смещение точки от положения равновесия. Частота – число полных колебаний в единицу времени. Фаза - величина, стоящая под знаком синуса или косинуса. Уравнение: , здесь S - величина, характеризующая состояние колеблющейся системы, - циклическая частота. Графически – с помощью синусоиды или косинусоиды.

? Затухающие колебания. Дифференциальное уравнение этих колебаний. Логарифмический декремент затухания, время релаксации, добротность.

Колебания, амплитуда которых со временем уменьшается, например, за счет силы трения. Уравнение: , здесь S - величина, характеризующая состояние колеблющейся системы, - циклическая частота, -коэффициент затухания. Логарифмический декремент затухания , где N – число колебаний, совершенных за время уменьшения амплитуды в N раз. Время релаксации t- в течение которого амплитуда уменьшается в е раз. Добротность Q= .

? Незатухающие вынужденные колебания. Дифференциальное уравнение этих колебаний. Что называют резонансом? Амплитуда и фаза вынужденных колебаний.

Если потери энергии колебаний, приводящие к их затуханию, полностью компенсировать, устанавливаются незатухающие колебания. Уравнение: . Здесь правая часть – меняющееся по гармоническому закону внешнее воздействие. Если собственная частота колебаний системы совпадает с внешней, имеет место резонанс - резкое возрастание амплитуды системы. Амплитуда , .

? Опишите сложение колебаний одинакового направления и одинаковой частоты, взаимоперпендикулярных колебаний. Что такое биения?

Амплитуда результирующего колебания, получающегося при сложении двух гармонических колебаний одинакового направления и одинаковой частоты , здесь А – амплитуды, j - начальные фазы. Начальная фаза результирующего колебания . Взаимоперпендикулярные колебания – уравнение траектории , здесь А и В амплитуды складываемых колебаний, j-разность фаз.

? Охарактеризуйте релаксационные колебания; автоколебания.

Релаксационные – автоколебания, резко отличающиеся по форме от гармонических, благодаря значительному рассеянию энергии в автоколебательных системах (трение в механических системах). Автоколебания – незатухающие колебания, поддерживаемые внешними источниками энергии при отсутствии внешней переменной силы. Отличие от вынужденных – частота и амплитуда автоколебаний определяются свойствами самой колебательной системы. Отличие от свободных колебаний – отличаются независимостью амплитуды от времени и от начального кратковременного воздействия, возбуждающего процесс колебаний. Пример автоколебательной системы –часы.

? Волны (основные понятия). Продольные и поперечные волны. Стоячая волна. Длина волны, связь ее с периодом и частотой.

Процесс распространения колебаний в пространстве называют волной. Направление переноса волной энергии колебаний – это направление движения волны. Продольная – колебание частиц среды происходит в направлении распространения волны. Поперечная - колебания частиц среды происходит перпендикулярно направлению распространения волны. Стоячая волна - образуется при наложении двух бегущих волн, распространяющихся навстречу друг другу с одинаковыми частотами и амплитудами, а в случае поперечных волн и одинаковой поляризацией. Длина волны - расстояние, на которое волна распространяется за один период. ( длина волны, v - скорость волны, Т - период колебаний)

? Принцип суперпозиции (наложения) волн. Групповая скорость и ее связь с фазовой скоростью.

Принцип суперпозиции – при распространении в линейной среде нескольких волн каждая распространяется так, будто другие волны отсутствуют, а результирующее смещение частицы среды в любой момент времени равно геометрической сумме смещений, которые получают частицы, участвуя в каждом из слагающих волновых процессов. Групповая скорость – скорость движения группы волн, образующих в каждый момент времени в пространстве локализованный волновой пакет. Скорость перемещения фазы волны – фазовая скорость. В недиспергированной среде они совпадают.

? Электромагнитная волна и ее свойства. Энергия электромагнитных волн.

Электромагнитная волна – электромагнитные колебания, распространяющиеся в пространстве. Экспериментально получены Герцем в 1880 г. Свойства- могут распространяться в средах и вакууме, в вакууме равна с, в средах меньше, поперечны, E и B взаимноперпендикулярны и перпендикулярны направлению распространения. Интенсивность увеличивается с ростом ускорения излучающей заряженной частицы, в определенных условиях проявляются типичные волновые свойства – дифракции и пр. Объемная плотность энергии .

Оптика

Основные формулы оптики

Скорость света в среде:

где c – скорость света в вакууме;

n – показатель преломления среды.

Оптическая длина пути световой волны:

L = ns ,

где s геометрическая длина пути световой волны в среде с показателем преломления n.

Оптическая разность хода двух световых волн:

∆ = L 1 – L 2 .

Зависимость разности фаз от оптической разности хода световых волн:

где λ – длина световой волны.

Условие максимального усиления света при интерференции:

∆ = k λ ( = 0, 1, 2, …) .

Условие максимального ослабления света:

Оптическая разность хода световых волн, возникающая при отражении монохроматического света от тонкой пленки:

∆ = 2d ,

где d – толщина пленки;

n – показатель преломления пленки;

I i – угол преломления света в пленке.

Радиус светлых колец Ньютона в отраженном свете:

r k = , (k = 1, 2, 3, …),

где k – номер кольца;

R – радиус кривизны.

Радиус темных колец Ньютона в отраженном свете:

r k = .

Угол φ отклонения лучей, соответствующий максимуму (светлая полоса) при дифракции на одной щели, определяется из условия

a sinφ = (k = 0, 1, 2, 3, … ),

где a – ширина щели;

k – порядковый номер максимума.

Угол φотклонения лучей, соответствующий максимуму (светлая полоса) при дифракции света на дифракционной решетке, определяется из условия

d sinφ = (k = 0, 1, 2, 3, …),

где d – период дифракционной решетки.

Разрешающая способность дифракционной решетки:

R = = kN ,

где ∆λ – наименьшая разность длин волн двух соседних спектральных линий (λ и λ+∆λ), при которой эти линии могут быть видны раздельно в спектре, полученном посредством данной решетки;

N – полное число щелей решетки.

Формула Вульфа – Брэггов:

2d sin θ = κ λ,

где θ – угол скольжения (угол между направлением параллельного пучка рентгеновского излучения, падающего на кристалл, и атомной плоскостью в кристалле);

d – расстояние между атомными плоскостями кристалла.

Закон Брюстера:

tg ε B = n 21 ,

где ε B – угол падения, при котором отразившийся от диэлектрика луч полностью поляризован;

n 21 – относительный показатель преломления второй среды относительно первой.

Закон Малюса:

I = I 0 cos 2 α,

где I 0 – интенсивность плоскополяризованного света, падающего на анализатор;

I – интенсивность этого света после анализатора;

α – угол между направлением колебаний электрического вектора света, падающего на анализатор, и плоскостью пропускания анализатора (если колебания электрического вектора падающего света совпадают с этой плоскостью, то анализатор пропускает данный свет без ослабления).

Угол поворота плоскости поляризации монохроматического света при прохождении через оптически активное вещество:

а) φ = αd (в твердых телах),

где α – постоянная вращения;

d – длина пути, пройденного светом в оптически активном веществе;

б) φ = [α]pd (в растворах),

где [α] – удельное вращение;

p – массовая концентрация оптически активного вещества в растворе.

Давление света при нормальном падении на поверхность:

,

где Е е – энергетическая освещенность (облученность);

ω – объемная плотность энергии излучения;

ρ– коэффициент отражения.

4.2. Понятия и определения раздела «оптика»

? Интерференции волн. Когерентность. Условие максимума и минимума.

Интерференция – взаимное усиление или ослабление когерентных волн при их наложении (когерентные – имеющие одинаковую длину и постоянную разность фаз в точке их наложения).

Максимум ;

минимум .

Здесь D-оптическая разность хода, l-длина волны.

? Принцип Гюйгенса-Френеля. Явление дифракции. Дифракция на щели, дифракционная решетка.

Принцип Гюйгенса-Френеля –каждая точка пространства, которой достигла в данный момент времени распространяющаяся волна, становится источником элементарных когерентных волн. Дифракция – огибание волнами препятствий, если размер препятствия сравним с длиной волны, отклонения света от прямолинейного распространения. Дифракция на щели – в параллельных лучах. На препятствие падает плоская волна, дифракционная картина наблюдается на экране, который находится в фокальной плоскости собирающей линзы, установленной на пути прошедшего через препятствие света. На экране получается «дифракционное изображение» удаленного источника света. Дифракционная решетка – система параллельных щелей равной ширины, лежащих в одной плоскости, разделенных равными по ширине непрозрачными промежутками. Используется для разложения света в спектр и измерения длин волн.

? Дисперсия света (нормальная и аномальная). Закон Бугера. Смысл коэффициента поглощения.

Дисперсия света – зависимость абсолютного показателя преломления вещества n от частоты ν (или длины волны λ) падающего на вещество света (). Скорость света в вакууме не зависит от частоты, поэтому в вакууме дисперсии нет. Нормальная дисперсия света - если показатель преломления монотонно возрастает с увеличением частоты (убывает с увеличением длины волны). Аномальная дисперсия – если показатель преломления монотонно убывает с увеличением частоты (возрастает с увеличением длины волны). Следствие дисперсии – разложение белого света в спектр при его преломлении в веществе. Поглощение света в веществе описывается законом Бугера

I 0 и I – интенсивности плоской монохроматической световой волны на входе и выходе слоя поглощающегося вещества толщиной х , a - коэффициент поглощения, зависит от длины волны, для разных веществ различен.

? Что называют поляризацией волн? Получение поляризованных волн. Закон Малюса.

Поляризация заключается в приобретении преимущественной ориентации направления колебаний в поперечных волнах. Упорядоченность в ориентации векторов напряженностей электрических и магнитных полей электромагнитной волны в плоскости, перпендикулярной направлению распространения светового луча. E , B -перпендикулярны. Естественный свет можно преобразовать в поляризованный с помощью поляризаторов. Закон Малюса (I 0 – прошедший через анализатор, I – прошедший через поляризатор).

? Корпускулярно – волновой дуализм. Гипотеза де Бройля.

Исторически были выдвинуты две теории света: корпускулярная – светящиеся тела испускают частицы-корпускулы (доказательство – излучение черного тела, фотоэффект) и волновая – светящееся тело вызывает в окружающей среде упругие колебания, распространяющиеся подобно звуковым волнам в воздухе (доказательство – явления интерференции, дифракции, поляризации света). Гипотеза Бройля – корпускулярно-волновые свойства присущи не только фотонам, но и частицам, имеющим массу покоя – электронам, протонам, нейтронам, атомам, молекулам. ? Фотоэффект. Уравнение Эйнштейна.

Фотоэффект- явление взаимодействия света с веществом, в результате которого энергия фотонов передается электронам вещества. Уравнение: (энергия фотона расходуется на работу выхода электрона и сообщение электрону кинетической энергии)

Темы кодификатора ЕГЭ: гармонические колебания; амплитуда, период, частота, фаза колебаний; свободные колебания, вынужденные колебания, резонанс.

Колебания - это повторяющиеся во времени изменения состояния системы. Понятие колебаний охватывает очень широкий круг явлений.

Колебания механических систем, или механические колебания - это механическое движение тела или системы тел, которое обладает повторяемостью во времени и происходит в окрестности положения равновесия. Положением равновесия называется такое состояние системы, в котором она может оставаться сколь угодно долго, не испытывая внешних воздействий.

Например, если маятник отклонить и отпустить, то начнутся колебания. Положение равновесия - это положение маятника при отсутствии отклонения. В этом положении маятник, если его не трогать, может пребывать сколь угодно долго. При колебаниях маятник много раз проходит положение равновесия.

Сразу после того, как отклонённый маятник отпустили, он начал двигаться, прошёл положение равновесия, достиг противоположного крайнего положения, на мгновение остановился в нём, двинулся в обратном направлении, снова прошёл положение равновесия и вернулся назад. Совершилось одно полное колебание . Дальше этот процесс будет периодически повторяться.

Амплитуда колебаний тела - это величина его наибольшего отклонения от положения равновесия.

Период колебаний - это время одного полного колебания. Можно сказать, что за период тело проходит путь в четыре амплитуды.

Частота колебаний - это величина, обратная периоду: . Частота измеряется в герцах (Гц) и показывает, сколько полных колебаний совершается за одну секунду.

Гармонические колебания.

Будем считать, что положение колеблющегося тела определяется одной-единственной координатой . Положению равновесия отвечает значение . Основная задача механики в данном случае состоит в нахождении функции , дающей координату тела в любой момент времени.

Для математического описания колебаний естественно использовать периодические функции. Таких функций много, но две из них - синус и косинус - являются самыми важными. У них много хороших свойств, и они тесно связаны с широким кругом физических явлений.

Поскольку функции синус и косинус получаются друг из друга сдвигом аргумента на , можно ограничиться только одной из них. Мы для определённости будем использовать косинус.

Гармонические колебания - это колебания, при которых координата зависит от времени по гармоническому закону:

(1)

Выясним смысл входящих в эту формулу величин.

Положительная величина является наибольшим по модулю значением координаты (так как максимальное значение модуля косинуса равно единице), т. е. наибольшим отклонением от положения равновесия. Поэтому - амплитуда колебаний.

Аргумент косинуса называется фазой колебаний. Величина , равная значению фазы при , называется начальной фазой. Начальная фаза отвечает начальной координате тела: .

Величина называется циклической частотой . Найдём её связь с периодом колебаний и частотой . Одному полному колебанию отвечает приращение фазы, равное радиан: , откуда

(2)

(3)

Измеряется циклическая частота в рад/с (радиан в секунду).

В соответствии с выражениями (2) и (3) получаем ещё две формы записи гармонического закона (1) :

График функции (1) , выражающей зависимость координаты от времени при гармонических колебаниях, приведён на рис. 1 .

Гармонический закон вида (1) носит самый общий характер. Он отвечает, например, ситуации, когда с маятником совершили одновременно два начальных действия: отклонили на величину и придали ему некоторую начальную скорость. Имеются два важных частных случая, когда одно из этих действий не совершалось.

Пусть маятник отклонили, но начальной скорости не сообщали (отпустили без начальной скорости). Ясно, что в этом случае , поэтому можно положить . Мы получаем закон косинуса:

График гармонических колебаний в этом случае представлен на рис. 2 .


Рис. 2. Закон косинуса

Допустим теперь, что маятник не отклоняли, но ударом сообщили ему начальную скорость из положения равновесия. В этом случае , так что можно положить . Получаем закон синуса:

График колебаний представлен на рис. 3 .


Рис. 3. Закон синуса

Уравнение гармонических колебаний.

Вернёмся к общему гармоническому закону (1) . Дифференцируем это равенство:

. (4)

Теперь дифференцируем полученное равенство (4) :

. (5)

Давайте сопоставим выражение (1) для координаты и выражение (5) для проекции ускорения. Мы видим, что проекция ускорения отличается от координаты лишь множителем :

. (6)

Это соотношение называется уравнением гармонических колебаний . Его можно переписать и в таком виде:

. (7)

C математической точки зрения уравнение (7) является дифференциальным уравнением . Решениями дифференциальных уравнений служат функции (а не числа, как в обычной алгебре).
Так вот, можно доказать, что:

Решением уравнения (7) является всякая функция вида (1) с произвольными ;

Никакая другая функция решением данного уравнения не является.

Иными словами, соотношения (6) , (7) описывают гармонические колебания с циклической частотой и только их. Две константы определяются из начальных условий - по начальным значениям координаты и скорости.

Пружинный маятник.

Пружинный маятник - это закреплённый на пружине груз, способный совершать колебания в горизонтальном или вертикальном направлении.

Найдём период малых горизонтальных колебаний пружинного маятника (рис. 4 ). Колебания будут малыми, если величина деформации пружины много меньше её размеров. При малых деформациях мы можем пользоваться законом Гука. Это приведёт к тому, что колебания окажутся гармоническими.

Трением пренебрегаем. Груз имеет массу , жёсткость пружины равна .

Координате отвечает положение равновесия, в котором пружина не деформирована. Следовательно, величина деформации пружины равна модулю координаты груза.


Рис. 4. Пружинный маятник

В горизонтальном направлении на груз действует только сила упругости со стороны пружины. Второй закон Ньютона для груза в проекции на ось имеет вид:

. (8)

Если (груз смещён вправо, как на рисунке), то сила упругости направлена в противоположную сторону, и . Наоборот, если , то . Знаки и всё время противоположны, поэтому закон Гука можно записать так:

Тогда соотношение (8) принимает вид:

Мы получили уравнение гармонических колебаний вида (6) , в котором

Циклическая частота колебаний пружинного маятника, таким образом, равна:

. (9)

Отсюда и из соотношения находим период горизонтальных колебаний пружинного маятника:

. (10)

Если подвесить груз на пружине, то получится пружинный маятник, совершающий колебания в вертикальном направлении. Можно показать, что и в этом случае для периода колебаний справедлива формула (10) .

Математический маятник.

Математический маятник - это небольшое тело, подвешенное на невесомой нерастяжимой нити (рис. 5 ). Математический маятник может совершать колебания в вертикальной плоскости в поле силы тяжести.

Рис. 5. Математический маятник

Найдём период малых колебаний математического маятника. Длина нити равна . Сопротивлением воздуха пренебрегаем.

Запишем для маятника второй закон Ньютона:

и спроектируем его на ось :

Если маятник занимает положение как на рисунке (т. е. ), то:

Если же маятник находится по другую сторону от положения равновесия (т. е. ), то:

Итак, при любом положении маятника имеем:

. (11)

Когда маятник покоится в положении равновесия, выполнено равенство . При малых колебаниях, когда отклонения маятника от положения равновесия малы (по сравнению с длиной нити), выполнено приближённое равенство . Воспользуемся им в формуле (11) :

Это - уравнение гармонических колебаний вида (6) , в котором

Следовательно, циклическая частота колебаний математического маятника равна:

. (12)

Отсюда период колебаний математического маятника:

. (13)

Обратите внимание, что в формулу (13) не входит масса груза. В отличие от пружинного маятника, период колебаний математического маятника не зависит от его массы.

Свободные и вынужденные колебания.

Говорят, что система совершает свободные колебания , если она однократно выведена из положения равновесия и в дальнейшем предоставлена сама себе. Никаких периодических внешних
воздействий система при этом не испытывает, и никаких внутренних источников энергии, поддерживающих колебания, в системе нет.

Рассмотренные выше колебания пружинного и математического маятников являются примерами свободных колебаний.

Частота, с которой совершаются свободные колебания, называется собственной частотой колебательной системы. Так, формулы (9) и (12) дают собственные (циклические) частоты колебаний пружинного и математического маятников.

В идеализированной ситуации при отсутствии трения свободные колебания являются незатухающими, т. е. имеют постоянную амплитуду и длятся неограниченно долго. В реальных колебательных системах всегда присутствует трение, поэтому свободные колебания постепенно затухают (рис. 6 ).

Вынужденные колебания - это колебания, совершаемые системой под воздействием внешней силы , периодически изменяющейся во времени (так называемой вынуждающей силы).

Предположим, что собственная частота колебаний системы равна , а вынуждающая сила зависит от времени по гармоническому закону:

В течение некоторого времени происходит установление вынужденных колебаний: система совершает сложное движение, которое является наложением выужденных и свободных колебаний. Свободные колебания постепенно затухают, и в установившемся режиме система совершает вынужденные колебания, которые также оказываются гармоническими. Частота установившихся вынужденных колебаний совпадает с частотой
вынуждающей силы (внешняя сила как бы навязывает системе свою частоту).

Амплитуда установившихся вынужденных колебаний зависит от частоты вынуждающей силы. График этой зависимости показан на рис. 7 .


Рис. 7. Резонанс

Мы видим, что вблизи частоты наступает резонанс - явление возрастания амплитуды вынужденных колебаний. Резонансная частота приближённо равна собственной частоте колебаний системы: , и это равенство выполняется тем точнее, чем меньше трение в системе. При отсутствии трения резонансная частота совпадает с собственной частотой колебаний, , а амплитуда колебаний возрастает до бесконечности при .

И получите два бесплатных урока в школе английского языка SkyEng!
Занимаюсь там сам - очень круто. Прогресс налицо.

В приложении можно учить слова, тренировать аудирование и произношение.

Попробуйте. Два урока бесплатно по моей ссылке!
Жмите

Колебательными движениями (или колебаниями) в физике и технике называют такие виды движений (или изменения состояний), которые обладают какой-либо степенью повторяемости.

Колебания, происходящие по законам синуса или косинуса, называют гармоническими.

Уравнение гармонических колебаний:

где t-время; x-величина изменяющаяся со временем (координата, заряд, ток, ЭДС и т.п.); A- амплитуда колебаний – максимальное отклонение колеблющейся величины от среднего (нулевого) значения; - фаза колебаний; - начальная фаза; w- циклическая частота (изменение фазы в единицу времени). За период фаза меняется на .

Дифференциальное уравнение гармонических колебаний

Уравнение вида:

дифференциальное уравнение гармонических колебаний.

Виды периодических колебаний можно с любой степени точности можно представить в виде суммы гармонических колебаний, так называемого гармонического ряда.

Колебания, которые будет совершать тело, если его вывести из состояния равновесия (не важно как) и предоставить самому себе, называют свободными (собственными) колебаниями. Если собственные колебания вызваны наличием только квазиупругой силы, то они будут гармоническими.

Колебания тела, обусловленные одновременным действием квазиупругой силы и силы трения (которая пропорциональна мгновенной скорости: ), называют затухающими колебаниями.

Уравнение (3) называется дифференциальным уравнением затухающих колебаний. Здесь – коэффициент затухания.

Решение дифференциального уравнения колебаний

Решением дифференциального уравнения затухающих колебаний (3) является соотношение вида:

Уравнение (4) называется уравнением затухающих колебаний. В уравнении (4) видно, что амплитуда затухающих колебаний зависит от времени. Константы A и определяются начальными условиями. Амплитуда колебаний убывает и они в целом выглядят так, как представлено на рис. 1

рис. 1.

Период затухающих колебаний вычисляется по формуле (5):

Физический коэффициента затухания смысл состоит в том, что коэффициент затухания – величина, обратная времени релаксации. А время релаксации – это время, за которое амплитуда уменьшается в e раз. Однако коэффициент затухания не вполне характеризует затухание. Обычно затухание колебаний характеризуется декрементом затухания. Последний показывает, во сколько раз уменьшается амплитуда колебаний за время, равное периоду колебаний. То есть декремент затухания определяется так:

Логарифм декремента затухания называется логарифмическим декрементом, он, очевидно, равен:

Если колебательная система подвергается воздействию внешней периодической силы, то возникают так называемые вынужденные колебания, имеющие незатухающий характер.

Вынужденные колебания следует отличать от автоколебаний. В случае автоколебаний в системе предполагается специальный механизм, который в такт с собственными колебаниями «поставляет» в систему небольшие порции энергии.

Примеры решения задач

ПРИМЕР 1

Задание Найдите энергию свободных колебаний груза подвешенного на пружине Рассмотрите случай физического маятника, зная, что жесткость пружины k, амплитуда колебаний A.

Решение Найдем энергию свободных колебаний. Она представлена двумя видами энергии: кинетической и потенциальной. Для шарика, подвешенного на пружине:

Колебания шарика описывает уравнение колебаний:

запишем уравнение колебаний скорости шарика, зная, что , движение происходит только вдоль оси Х следовательно:

Подставим (1.2) и (1.3) в (1.1), получим:

зная, что для физического маятника

Ответ Энергия свободных колебаний пропорциональна квадрату амплитуды колебаний

При изучении этого раздела следует иметь в виду, что колебания различной физической природы описываются с единых математических позиций. Здесь надо четко уяснить такие понятия, как гармоническое колебание, фаза, разность фаз, амплитуда, частота, период колебани.

Надо иметь в виду, что во всякой реальной колебательной системе есть сопротивления среды, т.е. колебания будут затухающими. Для характеристики затухания колебаний вводится коэффициент затухания и логарифмический декремент затухани.

Если колебания совершаются под действием внешней, периодически изменяющейся силы, то такие колебания называют вынужденными. Они будут незатухающими. Амплитуда вынужденных колебаний зависит от частоты вынуждающей силы. При приближении частоты вынужденных колебаний к частоте собственных колебаний амплитуда вынужденных колебаний резко возрастает. Это явление называется резонансом.

Переходя к изучению электромагнитных волн нужно четко представлять, что электромагнитная волна - это распространяющееся в пространстве электромагнитное поле. Простейшей системой, излучающей электромагнитные волны, является электрический диполь. Если диполь совершает гармонические колебания, то он излучает монохроматическую волну.

Таблица формул: колебания и волны

Физические законы, формулы, переменные

Формулы колебания и волны

Уравнение гармонических колебаний:

где х - смещение (отклонение) колеблющейся величины от положения равновесия;

А - амплитуда;

ω - круговая (циклическая) частота;

α - начальная фаза;

(ωt+α) - фаза.

Связь между периодом и круговой частотой:

Частота:

Связь круговой частоты с частотой:

Периоды собственных колебаний

1) пружинного маятника:

где k - жесткость пружины;

2) математического маятника:

где l - длина маятника,

g - ускорение свободного падения;

3) колебательного контура:

где L - индуктивность контура,

С - емкость конденсатора.

Частота собственных колебаний:

Сложение колебаний одинаковой частоты и направления:

1) амплитуда результирующего колебания

где А 1 и А 2 - амплитуды составляющих колебаний,

α 1 и α 2 - начальные фазы составляющих колебаний;

2) начальная фаза результирующего колебания

Уравнение затухающих колебаний:

е = 2,71... - основание натуральных логарифмов.

Амплитуда затухающих колебаний:

где А 0 - амплитуда в начальный момент времени;

β - коэффициент затухания;

Коэффициент затухания:

колеблющегося тела

где r - коэффициент сопротивления среды,

m - масса тела;

колебательного контура

где R - активное сопротивление,

L - индуктивность контура.

Частота затухающих колебаний ω:

Период затухающих колебаний Т:

Логарифмический декремент затухания: